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ABSTRACT 

Since the publication of Oliver Heaviside's work 
on symbolic calculus in 1893, scientists and engineers 
have made use of singularity functions and applied 
them to many different practical problems. Recently, 
the authors observe that some of the current literature 
involving singularity functions is inconsistent and/or 
incomplete and therefore raises some concern. In this 
article, the authors revisit the calculus of singularity 
functions in order to highlight these inconsistencies in 
an attempt to start a dialogue and ultimately unify the 
scientific community on this matter. Additionally, the 
proper solution of many interesting current and future 
practical scientific and engineering problems require 
the resolution of these inconsistencies. For these 
purposes, the authors consider two well-known 
singularity functions (the unit impulse function and the 
Heaviside unit step function), and review some of their 
properties and a number of intimate mathematical 
relationships and equations involving these two 
functions. The authors suggest that the current 
educational literature consider offering a wider 
coverage of these mathematical relations and 
equations. 

INTRODUCTION 

In physics, an impulsive quantity is generally 
considered to be a quantity of relatively large intensity 
or amplitude that is distributed over a relatively short 
range of some other quantity such as space or time. In 
mathematics, an impulse function is defined as a 
function that is an infinitely brief (or concentrated) and 
an infinitely strong pulse-shaped function having a 
finite area. Physically, while such a true impulsive 
quantity does not exist in the real world, the concept 
has been around for over a century in mathematical 
circles (Kirchhoff, 1882; Heaviside, 1893; Dirac, 
1926; Dirac, 1958; Van der Pol and Bremmer, 1955; 
Lighthill, 1958; Papoulis, 1962; Bracewell, 200D8; 
Zemanian, 1965'; Siebert, 19861

; Jammer, 1989). The 
impulse function was first used by Gustav Kirchhoff 
(Kirchhoff, 1882). It was later defined and heavily 
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applied in electromagnetic theory by Oliver Heaviside 
(Heaviside, 1893) and introduced into the early 
development of quantum mechanics by P.A. M. Dirac 
(Dirac, 1926; Dirac, 1958). The impulse function is an 
extremely powerful mathematical tool used to study 
the behavior of many phenomena involving impulsive 
quantities. For example, a brief force in physics is 
often represented in mathematical discussion by an 
impulse function of time. 

The unit impulse function o (x) ( also known as a 
delta or Dirac delta function) is mathematically 
defined as: 

o(x)=O for x*0 and J~o(x)dx=l (1) 

Note however that 8 (x) is not a function in the 
ordinary sense since no value is supplied for it at x=0. 
The most important equation involving o (x) is the 
well-known sifting integral given by: 

f~f(x)o(i)dx = f(0) (2) 

where f(x) is assumed to be a continuous function of x 
at x =0. 

The unit impulse function constitutes the central 
member of a special family of functions of infinite 
members that are intimately related one to the other 
through differentiation and integration. This family of 
functions is collectively known as singularity functions 
'since, in the light of conservative mathematics, their 
behavior is rather singular' (Guillemin, 1953). Any 
one of these functions is denoted by the symbol un(x) 
where the subscript n is an integer and is referred to as 
the order of the singularity function (Guillemin, 1953; 
Lynch and Truxal, 196t'; Huang and Parker, 1971; 
Director, 1975; Scott, 1965; Ziemer et al., 1998; 
Oppenheim et al., 1997). Using this notation, for 
example, the unit impulse function o(x) is designated 
as Uo(x), or as the singularity function of order zero. 
Some might view singularity functions as a very 
special group of functions and, therefore, can only be 
applied to a restricted class of theoretical problems. 
However, contrary to this view, the authors believe 
that singularity functions can be used in a much wider 
range of practical applications due to the fact that any 
arbitrary function can be expressed in terms of 
appropriately chosen singularity functions. 

I 
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Recently, while the authors have been working on 
new applications of singularity functions in physics 
and engineering (Osterberg and lnan, 1999; Osterberg 
and Inan, 2000; lnan and Osterberg, 20008; lnan and 
Osterberg, 2001 ), interestingly enough, they observed 
that some of the past and current literature on the 
applications and calculus of singularity functions is 
somewhat scattered, contradictory and raises some 
concern (Siebert, 1986'; Mita and Boufaida, 1999; 
Gangopadhyaya and Mallow, 2000; Vibet, 1999; 
Paskusz, 2000; Inan and Osterberg, 200Cf; Griffiths 
and Walborn, 1999). This fact motivated the authors 
to revisit and investigate the calculus of singularity 
functions, pose some fundamental questions, provide 
or suggest some answers to these questions, and make 
recommendations on some common set of rules and 
guidelines on this matter. The authors by no means 
claim that the content of this paper is final but rather 
view it as an initial step in opening up a dialog among 
scholars who have expertise in this field. The authors 
wish that this article plays a crucial role to invite and 
motivate the experts to participate in the conversation 
on the calculus of singularity functions and hope that 
the scientific community will reunite and agree toward 
accepting a common set of rules and guidelines on this 
matter. 

THE CALCULUS OF SINGULARITY 
FUNCTIONS -REVISITED 

In this section, the authors revisit the calculus of 
singularity functions by posing three fundamental 
questions based on their observations on the use of 
singularity functions in the literature. The first two 
questions are basic and non-controversial, whose 
answers are well established among the scientific 
community. However, the third question is more 
difficult and controversial and there are differences of 
opinion among the scientific community in providing 
concrete answers for these questions. The authors 
provide some answers for some of these questions and 
suggest or advise possible answers for the others. The 
following is the list of the three questions posed by the 
authors followed by their responses on each. 

Question 1; What basic singularity functions exist 
and are accepted by the scientific 
community? 

In general, there are an infinite number of basic 
singularity functions that exist and are accepted which 
are represented by un(x) where the subscript n is 
referred to as the order of the singularity function and 
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can take any integer value in the range -oo ~ n ~ 00 • 

Successive basic singularity functions are defined by 
(Ouillemin, 1953; Lynch and Trmcal, 1962\ Huang 
and Parker, 1971; Director, 1975; Scott, 1965; Ziemer 
et al., 1998): 

(3) 

The unit impulse function is the central singularity 
function of order zero designated as uo(x) (also 
commonly designated as o(x) as stated previously). 
Another well-known member of the singularity 
function family is the Heaviside unit step function 
u_1(x) (also commonly designated as u(x)) defined as: 

{
0 X <0 

u_,(x)= 1 x>O (4) 

Note that, generally, the value of the unit step function 
at the jump pointx = 0 (i.e., u_1(0)) is undefined (Van 
der Pol and Bremmer, 1955; Director, 1975; Scott, 
1965; Ziemer et al., 1998; Oppenheim et al., 1997; 
Bracewell, 2000b). Some other singularity functions 
are the unit parabolic function u_3(x), unit ramp 
function u..2(x) (also commonly designated as r (x) ), 
the unit doublet u1(x) (also commonly designated as 
o'(x) ) and the unit triplet u2(x) (also designated as 

o"(x) ). Note that for all basic singularity functions, 

it is assumed that un(x) = 0 for x < 0. Also note that 
un(x) for n ~ -2 constitutes the special group of 
singularity functions that are not ordinarily 
differentiable everywhere. 

Question 2: What mathematical operations 
involving basic singularity functions are 
valid and accepted by the scientific 
community? 

Note that for this question, the authors refer to 
simple functions which are linear combinations of 
individual basic singularity functions of the form: 

(5) -where un(x) represents the different types of basic 
singularity functions and b,. represents the constant 
coefficients. 

ll Differentiation of basic singularity functions is 
allowed as stated previously where successive basic 
singularity functions are related by differentiation as 
given by Eq. (3). As an example, one can provide the 
well-known intimate relationship between u_1(x) and 
u0(x) as (Van der Pol and Bremmer, 1955; Bracewell, 
200Cf; Siebert, 198~; Temple, 1981 ): 

duix) = uo(x) (6) 



or, equivalently: 

du(x) = o(x) 
dx 

(7) 

Eq. (7) states that the derivative of the unit step 
function is the unit impulse function. Since the unit 
step function has a jump and does not in fact possess a 
derivative at the origin, Eq. (7) must be interpreted as 
shorthand for 'the derivatives of a sequence of 
differentiable functions that approach u(x) as a limit 
and constitute a suitable defining sequence for o (x)' 
(Bracewell, 200<f). Note that Eq. (7) can easily be 
extended to the derivative of a simple discontinuous 
functionf{x) which can be written in terms of the unit 
step function u(x) as: 

J(x)=g(x)+ku(x)={g(x~;k ::~ (8) 

where g (x) is assumed to be an ordinary continuous 
function and f(x) is undefined at x = 0 since u(0) is 
undefined. The derivative off (x) results in a term 
k~x) and is given by: 

df(x) = dg(x) + k o(x) (9) 
dx dx 

Eq. (9) can easily be extended to the derivatives of 
simple functions with multiple unit step 
discontinuities, consisting of summation of terms as 
k,u(x- x), where the derivative of each discontinuity 

located at each point x; with an amount of jump k; 
leads to a term k/5(x-x). 

U Integration of basic singularity functions is also 
allowed. Similar to the case of differentiation, 
successive basic singularity functions are related to 
one another through integration as (Lynch and Truxal, 
196i-; Huang and Parker, 1971; Director, 1975; Scott, 
1965; Ziemer et al., 1998): 

J: u.(x')dx'= u • .Jx) (10) 

For example, the intimate relationship between the unit 
impulse function and the unit step function which 
simply results from their definitions given by Eqs. (1) 
and (4) can also be written as (Van der Pol and 
Bremmer, 1955; Bracewell, 20001): 

J~ u0(x1dx' =u-1(x) (11) 

or, equivalently: 

J~ <5(x')dx' = u(x) (12) 

Based on Eq. (12), the definite integral of the unit 
impulse function is the unit step function. Eq. (12) can 
easily be verified by interpreting 8(x) as the limit of an 
appropriate sequence of functions (Bracewell, 200<f). 
It is interesting to note here that based on Eqs. (3) and 
(10), successive differentiation of basic singularity 
functions can be undone through successive 
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integration (Ouillemin, 1953). Furthermore, differen
tiation of any simple function of the form given by Eq. 
(5) followed by an integration based on Eq. (10) or 
vice versa (i.e., integration followed by differentiation) 
will recover the original simple function. 

1J, Singularity functions can be used as input signals 
in linear constant-coefficient ordinary differential 
equations which have the general form as (Lynch and 
Truxal, 1962b; Zemanian, 1965b): 

N d* (x) " 
I,a* y * = I,b.uJx) (13) 
k-0 dx -" 

Eq. (13) is an ordinary differential equation with order 
N where the right-hand-side represents the 
superposition of basic singularity input signals un(x) 
and y (x) is the output signal which is produced as a 
result of those inputs. Eq. (13) is typically 
encountered in physical problems involving linear 
time-invariant systems. For example, the governing 
differential equation of a first-order RC circuit excited 
by a unit step voltage signal starting at t = 0 can be 
written as: 

dy(t)+.!.y~)=.!.u(t) (14) 
dt t t 

where the output signal y(t) represents the capacitor 
voltage and r is the time constant of the circuit given 
by t=RC. The solution of this first-order differential 
equation under zero initial condition is referred to as 
the unit step response of the circuit given by the well
known expression: 

y(t )= (1-e·t/• )u(t) (15) 

Similarly, the unit impulse response of this RC circuit 
can be obtained by replacing the right-hand-side of Eq. 
(14) with (Vi, 8(1) and re-solving to obtain: 

y{t)= (1/t)e~1•u(t) (16) 

li Sampling property of an impulse function. It can 
easily be shown by considering sequences of pulses 
that the product of the function f (x) with the unit 
impulse function for the case whenf(x) is continuous 
atx = 0 yields (Dirac, 1958; Bracewell, 2000"; Siebert, 
19861): 

f(x)D(x)= f(o)8(x) (17) 

Eq. (17) is called the sampling property of the unit 
impulse function. Therefore, the sampling property of 
an impulse function o (x) is valid when f (x) is 
continuous at x = 0. 

2.J., Sifting property of an impulse function. It can 
easily be shown using Eq. (17) that the integral of the 
product of the function f (x) with the unit impulse 
function o(x) for the case when f(x) is continuous at 
x = 0 yields (Dirac, 1958; Van der Pol and Bremmer, 



1955; Lighthill, 1958; Papoulis, 1962; Bracewell, 
200<f; Zemanian, 19658; Siebert, 19861): 

[f(x)8(x)dx=f(O) (18) 

Eq. (18) is called the sifting property of the unit 
impulse function. Therefore, the sifting property of an 
impulse function ~x) is valid when/ (x) is continuous 
atx = 0. 

Question 3: What functions, properties, and 
mathematical operations of singularity 
functions are considered to be ques
tionable and controversial? 

Note that in this question, the authors consider 
more complex singularity functions along with their 
properties and operations where the discussion is kept 
limited to expressions involving only the unit step and 
unit impulse functions. 

ll Regarding the existence and validity of u(0), the 
authors believe that, in general, the value of the unit 
step function at the jump point does not exist and 
should be left undefined (Van der Pol and Bremmer, 
1955; Director, 1975; Scott, 1965; Ziemer et al., 1998; 
Oppenheim et al., 1997; Bracewell, 2000b). This is 
consistent with the observation that the unit ramp 
function r(x), whose derivative is the unit step function 
u(x), is not differentiable at its comer point x = 0 (i.e., 
the slope at r(O) does not have a single definite value) 
(Thomas, 2001). However, it is also interesting to note 
that in the special case when one decides to choose an 
even sequence of pulse functions to represent the unit 
impulse function in the limit, then, based on Eq. (12), 
the integral of the even pulse sequence in the limit will 
lead to a corresponding unit step function which will 
have a definite value atx = 0, given by u(0) = 1/2. 

ll Singularity functions consisting of terms such as 
il'(x), eu(x) and sin[u(x)] are valid functions. As 
an example, consider the discontinuous function 
/{x) = eu(x) given by: 

{
1 x< 0 

f (x) = ew(x) = 
e x>O 

and undefined atx = 0, since u(0) is undefined. 

(19) 

ll Regarding the issue of equality of two similar 
singularity functions such as uP (x) and uq(x) (where it 

is assumed thatp~l andq~l), consider as an example 
the two discont.inuous functions u(x) and u2(x) (Vibet, 
1999; Paskusz, 2000; Inan and Osterberg, 200ff; 
Craig, 1964). These two functions are equal to zero 
for x < 0 and equal to one for x > 0. However, they 
are, in general, not equal at x = 0 since u (0) ~ u2(0) 
except in the special cases when u(0) happens to be 
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either one or zero. Therefore, the authors suggest that 
uP(x) and uq(x) be considered not equal. 

li Sampling property of an Impulse function when 
f(x) Is discontinuous at x = 0 is invalid. The authors 
believe that unlike Eq. (l 7), in the case when / (x) 
function is discontinuous and has a jump at x = 0, the 
product/(x)o(x) by Itself cannot be given a consistent 
meaning and must be avoided simply because /(0) is 
undefined (Siebert, 1986\ Craig, 1964). 

3...5., Regarding the differentiation of discontinuous 
Junctions consisting of terms such as tl'(x), eu(x) and 

sin[u(x)], consider as an example the discontinuous 
function f(x) = u P(x). Differentiating this function 
yields 

df(x) = pu'-t(x )5(x) (20) 
dx 

As before, the authors believe that the right-hand-side 
of Eq. (20) is, by itself, meaningless and must be 
avoided since ,l'-1(0) is undefined. Similarly, consider 
a second example where f(x) = eu<x>. We differentiate 
f(x) to obtain: 

(21) 

which ajain leads to an expression that is ambiguous 
since e" > is undefined. Therefore, the authors suggest 
that the differentiation of discontinuous functions 
consisting of tenns such as zl(x), eu(x) and sin[u(x)] be 
considered invalid. 

M, Regarding the integration of discontinuous 
functions consisting of terms such as tl'(x), eu<x> and 
sin[u(x)], consider as an example the discontinuous 
function/(x) =tl'(x). lntegratingf(x), we get: 

J~u'(x')dt' =r(x) (22) 

Note that the result of the integration operation given 
by Eq. (22) is independent of the value of the function 
at the discontinuity point, /(0), which is undefined. 
Therefore, unlike the differentiation operation, 
integration of more complicated discontinuous 
functions is valid. However, note that unlike in the 
case of basic singularity functions (i.e., when p = l ), 
differentiating the result of Eq. (22) in general will not 

recover the function tl'(x) (i.e., dr(xYdx=u(x}~uP(x) ). 

ll Sifting property of an impulse function when f(x) 
is discontinuous at x = 0 is valid. We already know 
that when the function/(x) is continuous at x = 0, the 
well-known sifting integral given by Eq. (18) "sifts 
out"/(0) value. Now, what happens to Eq. (18) if f(x) 
is discontinuous and has a jump at x = O? Under this 
circumstance, Eq. ( 18) is not valid since the function 
value/(0) is undefined. However, the authors firmly 



believe that the integral portion (left-hand-side) of 
Eq. (18) taken by itself can still be carried out and 
takes a valid and meaningful limiting value. As an 
example, consider the discontinuous function given by 
f(x) = uP(x). Even if the function value /(0) at the 
discontinuity point is undefined (since u(0) is 
undefined), the value of the si fling integral of f(x) can 
be obtained using Eq. (7) as: 

J_~ uP(x)8(x)dx= J: uP(x)du(x) 

=-u,,.1(x) __ l_ l [ (23) 

p+l _ p+l 

Furthermore, note that in the special case when f(x) is 
a simple discontinuous function which can be 
expressed in the form as Eq. (8), the sifting integral 
takes on a special value which is the arithmetic 
average of the values of the discontinuous /(x) func
tion just before and just after x = 0, given by 
(Bracewell, 200{f): 

J- f(x)8(x)dx=(f(O+)+ /(0-)]/2 (24) 

A recent article in the literature claims that Eq. (24) 
"cannot be sustained in general and continues to 
embarrass the unwary" (Griffiths and Walborn, 1999). 
The authors disagree with this confusing claim and 
firmly believe that Eq. (24) is always valid under the 
special condition that the discontinuous function f (x) 
has the form given by Eq. (8). For example, consider a 
special case. of Eq. (8) when g(x) = 0 and k = I (i.e., 
the discontinuous function is simply equal to the unit 
step function given by f(x) = u (x) ), Eq. (24) then 
becomes: 

f~ u(x) c5(x)dx = 1/2 (25) 

The authors observe that this special integral equation 
given by Eq. (25) is completely missing in the 
educational literature such as in signals and systems 
and electrical circuits textbooks. Furthermore, there 
are numerous publications in the literature which claim 
that the above special singularity integral on the left
hand-side of Eq. (25) is ambiguous, meaningless, does 
not exist and/or must be avoided (Siebert, 1986b; Mita 
and Boufaida, 1999; Gangopadhyaya and Mallow, 
2000),. Some publications even make wrong and 
inconsistent assumptions to avoid this singularity 
integral (e.g., assume u2(x) = u(x) ) (Vibet, 1999; 
Paskusz, 2000) which is, in general, not correct (lnan 
and Osterberg, 200<f; Craig, 1964). Contrary to these 
claims, the authors firmly believe that the singularity 
integral equation given by Eq. (25) is always valid as 
long as u(x) and o (x) are related by Eqs. (7) and (12) 
and can also be verified by interpreting both u(x) and 
o(x) as a limit of appropriate sequence of functions 
(l_nan and Osterberg, 2001 ). The authors also recently 
discovered that this special singularity integral 
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equation is very useful and has direct applications to 
many special practical problems in various branches of . 
science and engineering (Osterberg and Inan, 1999; 
Osterberg and Inan, 2000; Inan and Osterberg, 2000a; 
I nan and Osterberg, 2001 ). In addition, the limiting 
value of the general sifting integral (i.e., Eq. (24) ) 
applied to a simple discontinuous function of the form 
given by Eq. (8) can be verified by using Eq. (18) and 
the special integral in Eq. (25) as: 

[f(x)c5(x)dx = J~[g(x )+ ki.{x jo(x )dx 

=g(O)+k/2 
=lE(o)+k]/2+g(o)/2 (26) 

'-.,...-' 

1(nt f {0-}4 
= [r(o+ )+ 1(0-)]/2 

CONCLUSION 

In this article, the authors made an attempt to 
revisit the calculus of singularity functions, by 
surveying some of the past and current literature on the 
calculus and applications of singularity functions and 
by providing their views and observations on the 
mathematical inconsistencies on this matter. The 
authors by no means claim that their analysis of the 
mathematics and use of singularity functions is final 
and believe that more research is definitely needed to 
reunite the scholars and experts on this matter. The 
authors sincerely hope that this work will help the 
scientific community to gain a more uniform 
understanding and use of singularity functions in the 
literature. 
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