## University of Portland School of Engineering

EE 262 Spring 2012 A. Inan

Homework # 4—Convolution Integral and Sum

(Assigned: Monday, February 27, 2012) (<u>Due date:</u> Wednesday, March 7, 2012, 1:35p.m.)

The following homework problems are prepared by A. Inan:

Problem # 1. Convolution integrals. Evaluate the following convolution integrals:

(a)  $y(t) = e^{-at}u(t) * e^{-bt}u(t)$  where  $a, b \ge 0$ (b)  $y(t) = e^{-at}u(t) * u(t)$  where  $a \ge 0$ (c)  $y(t) = e^{-at}u(t) * \delta(t-b)$  where  $a, b \ge 0$ (d)  $y(t) = e^{-2t}u(t) * [3u(t-1)-2\delta(t-3)]$ (e)  $y(t) = e^{-2t}u(t-1) * 3u(t-4)$ 

Provide y(t) functions obtained in their simplest form.

**Problem # 2. CT LTI System.** The unit-step response of a continuous-time (CT) linear time-invariant (LTI) system shown is given by  $y_s(t) = (3-2e^{-t})u(t)$ . Find (a) the impulse response h(t); (b) the unit-ramp response  $y_r(t)$ ; and (c) the response y(t) due to x(t) = 2[u(t-1)-u(t-3)]. Assume zero initial conditions.



**Problem # 3. Convolution integrals.** Evaluate the following convolution integrals:

(a) y(t) = u(t) \* r(t)(b) y(t) = u(t-a) \* r(t-b)(c)  $y(t) = [2r(t-1)+u(t-3)] * [u(t) -3\delta(t-2)]$ 

Provide y(t) functions in their simplest form.

**Problem # 4. CT LTI System.** The impulse response of a CT LTI system shown is given by h(t) = 2[u(t)-u(t-2)]. If the input signal x(t) = t[u(t-1)-u(t-3)] is applied to this system, find its response y(t). Assume zero initial conditions.



**Problem # 5. Convolution integral.** Evaluate and sketch the result of the convolution integral y(t) = x(t) \* h(t) where x(t) = A[u(t-a)-u(t+a)], h(t) = B[u(t+b)-u(t-b)], and  $b \ge a \ge 0$ . (<u>Hint:</u> First, sketch both functions to gain some insight as to what to expect as a result of the convolution integral.)

**Problem # 6. Convolution sums.** Evaluate the following convolution sums:

(a) 
$$y[n] = x[n] * h[n] = (\delta[n-3]-2\delta[n-1]) * (3u[n+1]-2u[n-1]-u[n-3])$$
  
(b)  $y[n] = x[n] * h[n] = (2\delta[n+1]-3\delta[n-2]) * (2u[n]-5u[n-2]+3u[n-4])$ 

For each case, provide y[n] function in its simplest form.

**Problem # 7. DT LTI system.** The impulse response of a discrete-time (DT) LTI system is given as  $h[n] = \delta[n+1] - 3\delta[n-2]$ . Find the response y[n] of this system due to an input signal x[n] = n(u[n]-u[n-4]). Assume zero initial conditions.

