University of Portland School of Engineering

EE 262-δignals & δystems-3 cr. hrs. Spring 2012

Midterm Exam # 2

(Prepared by Professor A. S. Inan)

(Friday, March 30, 2012)

Name:	SOLUTIONS)	<u> </u>
Signature:	5 00	9 5
"Honesly is the best-policy." Aesop (~620B.C?)		
"An honest mind possesses a kingdom." Lucius Annaeus Seneca (4B.C.–65A.D.) "Honest people are the true winners of the universe." Anonymous		

Select and do any 4 of the 5 problems assigned during class time. The fifth problem is a take-home problem due class time on Monday, April 3, 2012.

(1) (Total: 20 points). DT LTI system. The unit impulse of a DT LTI system is provided below as shown. An input signal $x[n] = 3\delta[n-1] - 2\delta[n-3]$ is applied to this system.

(b) (12 points) Find and sketch the zero-state response $y_{zs}[n]$ of this system.

(2)(Total: 20 points) LTI system. Consider the following DT LTI system with its impulse response provided as shown.

$$h[n] = 2\delta[n] - 5\delta[n-1] + 3\delta[n-5]$$

(a) (10 points) Find and sketch the unit-step response of this system.

$$y_{s}[n] = u[n] * h[n]$$

$$= 2u[n] - 5u[n-1] + 3u[n-5]$$

$$y_{s}[n]$$

$$y_{s}[n]$$

$$y_{s}[n]$$

$$y_{s}[n]$$

$$y_{s}[n]$$

$$y_{s}[n]$$

(b) (10 points) Find and sketch the zero-state response of this system due to x[n] = 3u[n-2].

$$y_{zs}[n] = 3y_{s}[n-2]$$
= $6u[n-2]-15u[n-3]+9u[n-7]$
?m shifted

(3)(Total: 20 points) Electric circuits. For the electric circuit shown:

(4)(20 points) Convolution integral. Find and sketch the function y(t) obtained as a result of convolving the two signals shown below. Provide all the pertinent values on your sketch.

$$\chi(t) = 3u(t+1) - 3u(t-2)$$

$$h(t) = 2u(t-1) - 2u(t-4)$$

Using
$$u(t-a) * u(t-b) = r(t-a-b)$$
, we have

$$\chi(t) * h(t) = 6r(t) - 6r(t-3) - 6r(t-3) + 6r(t-6)$$

$$= 6r(t) - 12r(t-3) + 6r(t-6)$$

(5)(Total: 20 points) LTI system. The difference equation governing an LTI system is provided as shown.

(a) (10) Find the impulse response h[n] of this system in its most general form.

$$h[n] - 0.5h[n-1] + 35[n] = 0$$
 $n = 0 \rightarrow h[0] - 0.5h[-1] + 3 = 0 \rightarrow h[0] = -3$
 $n = 1 \rightarrow h[1] - 0.5h[0] + 0 = 0 \rightarrow h[1] = -(0.5)(3)$
 $n = 2 \rightarrow h[2] - 0.5h[1] + 0 = 0 \rightarrow h[2] = -(0.5)(3)$
 $n = 3 \rightarrow h[3] - 0.5h[2] + 0 = 0 \rightarrow h[3] = -(0.5)(3)$

[I'm generalized g

o' $h[n] = -(0.5)(3)u[n]$

(b)(10) Find the value of the sample of the unit-step response of this system at n = 3. (That is, find $y_s[3]$.)

$$y_{s}[n] = \sum_{k=0}^{\infty} h[n-k]$$

$$y_{s}[3] = \sum_{k=0}^{\infty} h[3] + h[2] + h[4] + h[0]$$

$$= (-3) \left[(0.5)^{3} + (0.5)^{2} + (0.5) + 4 \right]$$

$$= (-3) \left[\frac{1}{8} + \frac{1}{4} + \frac{4}{2} + 4 \right] = (-3) \left(\frac{15}{8} \right) = -\frac{45}{8}$$

$$\approx \left[-5.625 \right]$$

$$6$$