University of Portland School of Engineering

EE 271–Electrical Circuits Laboratory Fall 2016

Lab Experiment #4: Electrical Circuit
Theorems

Electrical Circuit Theorems

I. Objective

In this experiment, the students will analyze, construct and test dc resistive circuits to gain further insight and hands-on experience on electrical circuits as well as to verify some of the circuit theorems they learn in class such as the *Superposition Principle*, *Thevenin* and *Norton Equivalent Circuits* and *Maximum Power Transfer Theorem*.

II. Procedure

PART A: Superposition Principle

<u>Pre-lab Assignment A.1:</u> For the circuit shown in Fig. 1, calculate the voltage V_2 across the resistor R_2 using the superposition principle. Provide your work step by step and box your answers.

<u>Pre-lab Assignment A.2:</u> For the circuit shown in Fig. 1, reverse the polarity of the 5 V dc voltage source and redo pre-lab assignment A.1. (<u>Hint:</u> You can use the results of Pre-lab 1.a.) Box your answers.

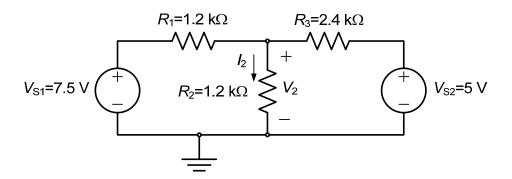


Figure 1. A resistive circuit excited by two dc voltage sources.

<u>Lab Experiment A.1:</u> Construct the resistive circuit shown in Fig. 1. Using the *LCR* meter, measure and record the actual values of the resistors R_1 , R_2 , and R_3 used in your circuit. To verify the superposition principle, measure and record the voltage V_2 for the following three cases (record your measurements in Table 1 form as provided below):

- (a) When V_{s1} voltage is on and V_{s2} is off. (Voltage source "off" means you disconnect the voltage source from the circuit and short the terminals where this voltage source was connected. Warning: Do not short the terminals of the voltage source itself!)
- (b) When V_{s1} voltage is off and V_{s2} is on.
- (c) When both V_{s1} and V_{s2} voltages are on.

Table 1. Measured V_2 values in the circuit shown in Figure 1.

$V_{2}\left(V\right)$	$V_{2}\left(V\right)$	$V_{2}\left(V\right)$
$(V_{s1} \text{ on and } V_{s2} \text{ off})$	$(V_{s1} \text{ off and } V_{s2} \text{ on})$	(Both V_{s1} and V_{s2} on)

Check to see if superposition holds. Also check to see if your measured V_2 values agree with the V_2 values calculated in your pre-lab assignment A.1 (i.e., calculate percentage error between the calculated and the measured V_2 values).

<u>Lab Experiment A.2:</u> Reverse the polarity of the 5 V voltage source in your circuit and repeat the same V_2 measurements done in Lab Experiment A.1, parts (a), (b) and (c). Again record your measurements in Table 2 form as provided below.

Table 2. Measured V_2 values in the circuit shown in Figure 1 where the polarity of the 5 V voltage source is reversed.

$V_2(V)$	$V_{2}\left(V\right)$	$V_{2}\left(V\right)$
$(V_{s1} \text{ on and } V_{s2} \text{ off})$	$(V_{s1} \text{ off and } V_{s2} \text{ on})$	(Both V_{s1} and V_{s2} on)

Check to see if superposition holds. Also check to see if your measured V_2 values agree with the V_2 values calculated in your pre-lab assignment A.2.

PART B: Thevenin, Norton & the Maximum Power Transfer Theorem

<u>Pre-lab Assignment B.1:</u> For the circuit shown in Fig. 2, find the Thevenin and Norton equivalent circuits seen between terminals **A** and **B**. Draw each equivalent circuit separately with the appropriate values provided. Provide your work step by step and box your results.

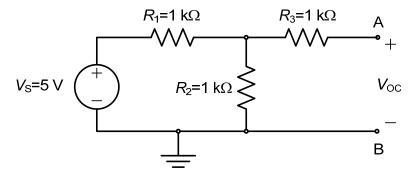


Figure 2. A resistive circuit excited by a dc voltage source.

Pre-lab Assignment B.2: For the circuit shown in Fig. 2, find the optimum value of the external load resistance $R_{L,opt}$ to be connected between the terminals **A** and **B** so that it receives maximum power from the circuit. What is $P_{L,max}$? (Hint: Use the results of pre-lab assignment B.1.)

Lab Experiment B.1: Construct the circuit shown in Fig. 2. Using the *LCR* meter, measure and record the actual values of the resistors used in your circuit. Verify the Thevenin and Norton equivalent circuits obtained in pre-lab assignment B.1 by measuring the open-circuit voltage *V*_{OC} and short-circuit current *I*_{SC} between terminals **A** and **B**.

Table 3. Measured values of $V_{\rm OC}$, $I_{\rm SC}$ and $V_{\rm L}$, and calculated value of $R_{\rm T}$ (or $R_{\rm N}$) and $P_{\rm L}$ in the circuit shown in Figure 2.

V _{OC} (V)	I _{SC} (mA)	R_{T} or $R_{\mathrm{N}}\left(\Omega\right)$	$V_{\rm L}\left({ m V} ight)$	$P_{\rm L}$ (mW)

<u>Lab Experiment B.2:</u> Connect a load resistance with the optimum value $R_{L,opt}$ between terminals **A-B** in the original circuit shown in Fig. 2. Measure the voltage V_L across $R_{L,opt}$ and use it to verify the $P_{L,max}$ value calculated in pre-lab assignment B.2.

PART C: Maximum power to a load resistance with fixed value

Pre-lab Assignment C: In Fig. 3, assume that the load resistance R_L has a fixed value given by $R_L=1$ k Ω .

- (a) How much power is being delivered to R_L ? Show your work step by step.
- (b) Your job is to introduce a single external resistor $R_{\rm ext}$ into the circuit with an appropriate value to maximize power delivery to the 1 k Ω load. What is the value of $R_{\rm ext}$? (Hint: The external resistor could even be a piece of wire.) Where should it be connected? With the external resistor properly connected to the circuit, what is $P_{\rm L,max}$? (Note that this problem is different than the maximum power transfer theorem.) Show your work and box your results!

Lab Experiment C: Verify the results of pre-lab assignment 3 experimentally. Measure and record the load voltage V_L and the current I_L with and without the external resistance connected and calculate the load power using $P_L = V_L I_L$ in each case. Approximately how much percent did the load power increase due to the introduction of the external resistance R_{ext} into the circuit?

Table 4. Measured values of V_L and I_L , and calculated values of P_L in the circuit shown in Figure 3.

$V_{\rm L}\left({ m V} ight)$ no $R_{ m ext}$)	$V_{L}(V)$ (with R_{ext})	I _L (mA) (no R _{ext})	I_{L} (mA) (with R_{ext})	P_{L} (mW) (no R_{ext})	P_{L} (mW) (with R_{ext})	% P _L increase

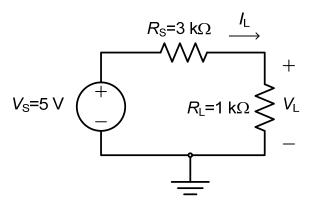


Figure 3. A circuit with a fixed load resistance having a value $R_L=1$ k Ω .

III. Discussions & Conclusion

In this section, discuss the various aspects of Experiment #4 and make some conclusions. In your write-up, you should at least address the following questions:

- 1. What was the objective of this experiment and was the objective achieved?
- 2. Did any of your measurements have more than 5% error? What was your maximum % error?
- 3. What sources of error may have contributed to the differences between the theoretical values and the measured values?
- 4. Other comments relevant to this experiment.