EE 271-Experiment # 4: Electrical Circuit Theorems

Table 1. Measured V_2 values in the circuit shown in Figure 1.

$V_{2}\left(V\right)$	$V_{2}\left(V\right)$	$V_{2}\left(V\right)$
$(V_{s1} \text{ on and } V_{s2} \text{ off})$	$(V_{s1} \text{ off and } V_{s2} \text{ on})$	(Both V _{s1} and V _{s2} on)

Table 2. Measured V_2 values in the circuit shown in Figure 1 where the polarity of the 5 V voltage source is reversed.

$V_{2}\left(V\right)$	$V_2\left(V\right)$	$V_2(V)$
$(V_{s1} \text{ on and } V_{s2} \text{ off})$	$(V_{s1} \text{ off and } V_{s2} \text{ on})$	(Both V_{s1} and V_{s2} on)

Table 3. Measured values of $V_{\rm OC}$, $I_{\rm SC}$ and $V_{\rm L}$, and calculated value of $R_{\rm T}$ (or $R_{\rm N}$) and $P_{\rm L}$ in the circuit shown in Figure 2.

Voc (V)	I _{SC} (mA)	R_{T} or $R_{\mathrm{N}}\left(\Omega\right)$	$V_{\rm L}\left({ m V} ight)$	$P_{\rm L}$ (mW)

Table 4. Measured values of V_L and I_L , and calculated values of P_L in the circuit shown in Figure 3.

$V_{\rm L}\left({ m V} ight)$ (no $R_{ m ext}$)	$V_{L}(V)$ (with R_{ext})	I _L (mA) (no R _{ext})	I_{L} (mA) (with R_{ext})	P_{L} (mW) (no R_{ext})	P_{L} (mW) (with R_{ext})	% P _L increase