
You are allowed to use your lab manual and lab notebook during the quiz.

(1) (30 points) Fill in the blanks in Table 1 (show your work!):

Decimal number	Binary number
33 →	
	← 1011
111 >	
	← 101101

Table 1. Decimal ↔ Binary conversion table

(2) (30 points) For the circuit shown, find the general mathematical expression for the voltage v_{out} that will be measured by the voltmeter in terms of source voltages v_{S1} and v_{S2} . Show your work step by step.

More questions on the back!

- (3) (20 points) Using the expression found in Problem (2), find the voltmeter reading expected for each one of the following four cases:
 - (a) $v_{S1}=v_{S2}=0$.
 - (b) $v_{S1}=0 \text{ V} \text{ and } v_{S2}=4.$
 - (c) $v_{S1}=4$ and $v_{S2}=0$ V.
 - (d) $v_{S1} = v_{S2} = 4 \text{ V}$.

(4) (20 points) Based on the results of Problem (3), state one application where this circuit could be used. (<u>Hint:</u> Interpret 4 V as logic HIGH state (binary 1), 0 V as logic LOW state (binary 0) and pretend as if the values of v_{s1} and v_{s2} voltages side-by-side as $v_{s2}v_{s1}$ represent a two-digit binary input signal applied to the circuit, as shown in Table 2.)

Table 2. Binary number $v_{S2}v_{S1}$

$v_{\rm S2}\left({ m V}\right)$	$v_{\rm S1}\left({\rm V}\right)$	Binary number
		$v_{\rm S2}v_{\rm S1}$
0	0	00
0	4	01
4	0	10
4	4	11