University of Portland School of Engineering

<u>EE 301-Electromagnetic Fields-3 cr. hrs.</u> <u>Spring 2007</u>

Midterm Exam # 2

<u>Sinusoidal Steady-State Waves on Transmission Lines</u> (Prepared by Professor A. S. Inan)

(Monday, April 16, 2007) (Closed Book Exam; 2 Formula Sheets Allowed) (Total Time: 55 mins.)

Name:_____

 \odot

 \odot

Signature:_____

"Honesty is the best policy." Aesop (~ 620B.C. -?)

"An honest mind possesses a kingdom." Lucius Annaeus Seneca (4B.C.–65A.D.)

"Honest people are the true winners of the universe." Anonymous

> "Honesty is not for sale." A. Inan

Problem #	Points gained
#1	
#2	
#3	
Total	

This table will be used by Inan for grading!

(1) (15 mins., <u>Total</u>: 40 points) A lossless transmission line terminated with a complex impedance. A 50 Ω transmission line is terminated with an inductive load impedance given by $Z_L = 10 + j60 \Omega$, as shown.

(a) (10 points) Find the load reflection coefficient, Γ_L . (Provide your answer in polar form.) Show your work!

(b) (*10 points*) What is the value of the standing wave ratio, *S*, on the line? (Show your work!)

(c) (10 points) Calculate the percentage time-average incident power that reflects back from the load.

(d) (10 points) Find the V_{max} and V_{min} positions nearest to the load. Provide your answers as electrical lengths. (2) (15 mins., <u>Total:</u> 30 points) **Two cascaded transmission lines.** Consider the transmission line circuit as shown. Assume lossless lines.

(a) (15 points) Find the standing wave ratio on each line. Show your work!

(b) (15 points) Find the time-average power delivered to each impedance $Z_1=150 \Omega$ and $Z_2=-j150 \Omega$.

(3) (15 mins., <u>Total</u>: 30 points) Unknown load impedance. Consider a 50 Ω transmission line terminated with an unknown load Z_L. If the standing-wave ratio on the line is measured to be S \cong 4.2 and the nearest voltage minimum point with respect to the load is located at 0.21 λ , find the following:

(a) (10 points) The load impedance Z_L . Show your work step by step.

(b) (10 points) The nearest voltage maximum position to the load.

(c) (10 points) The input impedance Z_{in} at the nearest voltage minimum and maximum positions found in parts (a) and (b).