University of Portland School of Engineering

EE 301 Spring 2013 A.Inan

<u>Homework # 2</u> <u>Distributed-Circuit Parameters of Simple Transmission-Line (TL) Structures</u> <u>& Digital Signal Propagation on Lossless TLs</u> (Copyright by A. S. Inan) (Assigned: Monday, January 28, 2013) (Due: Wednesday, February 6, 2013, 11:25a.m.)

(1) A resistively terminated transmission line. Consider the transmission-line circuit excited by an ideal step voltage source as shown. Assuming lossless transmission line and using a bounce diagram, determine the values of the source-end and load-end voltages v_s and v_L and the source-end and the load-ond currents i_s and i_L at the following times:

Provide all of your answers in a table form. A sample table could be of the form given by

<i>t</i> (ns)	$V_{S}(V)$	$V_{L}(V)$	<i>i</i> _S (mA)	$i_{\rm L}$ (mA)
1				
2				
3				

(2) Transient response of a cascaded transmission-line circuit. Consider the circuit consisting of two cascaded lossless transmission lines each with characteristic impedance and one-way time delay provided as shown. Assuming both lines to be uncharged before t = 0, sketch the source-end, junction and load-end voltages v_S , v_J , and v_L as a function of time for the following three cases:

For each case, provide a complete bounce diagram. Sketch each voltage waveform only over the time interval $0 < t < 9t_d$. Note that in your sketches, your voltage values will be in terms of V_0 and your time axis will be in terms of t_d .

(3) A resistively terminated transmission line. Consider the transmission line circuit terminated with a resistive load as shown. If the switch at the load end opens at t = 0 after being closed for a long time, calculate and fill out the source-end and load-end voltage values in the table provided below. Provide a bounce diagram in each case to justify your voltage values.

$Z_0\left(\Omega ight)$	$R_{\rm L}(\Omega)$	<i>t</i> (ns)	$\mathcal{V}_{S}(V)$	<i>ν</i> _L (V)
50	50	0^{+}		
50	50	1		
50	50	2		
50	0	0^+		
50	0	1		
150	0	1		
150	0	2		

(4) Characterizing a transmission-line circuit using a TDR waveform. Consider the transmission-line circuit below. At t = 0, the circuit is excited by an ideal step voltage source of 3 V peak value. Using the source-end voltage waveform v_s observed on a TDR display as shown, determine the characteristic impedance and the length of the line, Z_0 and l, and the unknown load resistor, R_L . Show your work step-by-step.

(5) A pulse excited transmission line. Consider the transmission-line circuit excited by a voltage pulse with 5 V peak value and 2 ns duration, as shown. Using a bounce diagram, find and sketch the source-end and load-end voltages $v_{\rm S}$ and $v_{\rm L}$ as a function of time up to t = 9 ns.

(6) An open-circuit terminated transmission line excited by a dc voltage source. Consider a lossless open-circuit terminated transmission-line excited by a dc voltage source with voltage V_0 as shown. At t = 0, the switch opens. Assuming steady-state condition to apply at $t = 0^-$, complete the values of the source-end and load-end voltages v_s and v_L in terms of the dc voltage V_0 in the table provided below. Provide a bounce diagram to justify your values.

t/t_d	$v_{ m S}/V_0$	$v_{ m L}/V_0$
0.5		
1.5		
2.5		

Please use the following guidelines for your homework solutions:

- 1) On the first sheet, at the top center, write: <u>Homework #2-Solutions</u>.
- 2) Provide <u>your full name</u> on the upper right corner of the first sheet.
- 3) Also write: EE 301/Spring 2013 on the upper left corner of the first sheet.
- 4) Solve each problem on a separate sheet unless your solution is very short.
- 5) Box all of your answers.
- 6) Staple your solutions in the above order before you turn them in.

Please turn in your homework on time.