University of Portland School of Engineering

<u>Quizzing your Smith chart skills</u> (Copyright by A. S. Inan)

The purpose of this quiz is to give you the opportunity to practice basic problems involving the Smith chart.

- (1) **Impedance point on the Smith chart.** On the Smith chart shown in Fig. 1, which one of the following is the normalized impedance corresponding to point A?
- (a) 1 (b) 1+j (c) 1-j (d) j (e) -j
- (2) Impedance point on the Smith chart. On the Smith chart shown in Fig. 1, which one of the following is the normalized impedance corresponding to point D?
- (a) 0.146 (b) j1.3 (c) -j1.3 (d) -1.3 (e) -j0.354
- (3) Impedance to admittance conversion on the Smith chart. On the Smith chart shown in Fig. 1, if point E represents the value of a normalized impedance, $\overline{Z}_{\rm E}$, what is the corresponding normalized admittance $\overline{Y}_{\rm E}$?
- (a) 1.5-j1.1 (b) 1.3+j1.1 (c) 2.6-j1.1(d) 1.3-j1.1 (e) 0.46+j0.38
- (4) Recording standing-wave ratio value on the Smith chart. In Fig. 1, if point A represents the normalized impedance terminating the load end of a lossless transmission line with characteristic impedance Z_0 , (i.e., $\overline{Z}_A = Z_L/Z_0$) what is the standing-wave ratio on this line?
- (a) ~ 0.38 (b) ~ 3.4 (c) ~ 2.6 (d) ~ 1.41 (e) ~ 1

- (5) Adding two impedances on the Smith chart. In Fig. 1, if points B and C represent two normalized impedances \overline{Z}_{B} and \overline{Z}_{C} , which of the following is $\overline{Z}_{B} + \overline{Z}_{C}$?
- (a) 0.95+j2.45(b) 0.95+j1.35(c) 0.05+j2.45(d) 0.95-j1.35(e) 0.95-j2.45
- (6) Input impedance of a short circuit terminated line. Consider a short-circuit terminated 50 Ω transmission line with electrical length $l/\lambda_1=0.125$ at frequency f_1 . What is the input impedance of this line at f_1 ?
- (a) 50Ω (b) $j50 \Omega$ (c) $-j50 \Omega$

 (d) ∞ (e) 0
 (f) $50-j50 \Omega$
- (7) Input impedance at $f_2=2f_1$. What is the input impedance of the transmission line given in Problem (6) at a frequency $f_2=2f_1$?
- (a) 50Ω (b) $j50 \Omega$ (c) $-j50 \Omega$

 (d) ∞ (e) 0
 (f) $50+j50 \Omega$
- (8) Input impedance of a terminated line. Consider a 50 Ω -line with electrical length 0.125 terminated with a 50 Ω load. What is the input impedance of this line?
- (a) 50Ω (b) $50+j50 \Omega$ (c) $50-j50 \Omega$ (d) 100Ω (e) 25Ω
- (9) The position where Z_{in} is real. In Fig. 1, if point E represents the normalized load impedance terminating a transmission line (i.e., $\overline{Z}_E = Z_L/Z_0$), what is the nearest electrical position with respect to the load position where the input impedance of the line is purely resistive?
- (a) ~0.25 (b) ~0.182 (c) ~0.318 (d) ~0.13 (e) ~0.12
- (10) The position where $\text{Re}\{Z_{in}\}=Z_0$. In Problem (9), what is the nearest electrical position with respect to the position of the load impedance \overline{Z}_E at which the real (resistive) part of the normalized input impedance of the line is 1 (i.e., $\text{Re}\{Z_{in}\}=Z_0$)?
- (a) ~0.62 (b) ~0.12 (c) ~0.932 (d) ~0.093 (e) ~0.229

(11) The position where $\text{Im}\{Z_{in}\}=-0.5Z_0$. In Problem (9), what is the nearest electrical position with respect to the position of the load impedance \overline{Z}_E at which the reactive (imaginary) part of the input impedance of the line is $-0.5Z_0$?

(a) ~ 0.019 (b) ~ 0.157 (c) ~ 0.197 (d) ~ 0.266 (e) ~ 0.343

(12) Unknown load. In Fig. 1, assume point A represents the normalized input impedance $\overline{Z}_A = Z_{in}/Z_0$ of a lossless transmission line of electrical length $l/\lambda_1=0.2$ terminated with an unknown load \overline{Z}_L . What is the normalized load impedance \overline{Z}_L ?

Fig. 1. Smith chart