
University of Portland School of Engineering

EE 301 Spring 2017 A.Inan

Homework # 6-Sinusoidal Steady-State (AC) Waves on Transmission Lines

(Assigned: Monday, April 3, 2017) (Due: Monday, April 10, 2017, 11:25a.m.)

(1) A 50 Ω , 11 m long air transmission line terminated with a load impedance of $Z_L=25-j75$ Ω is excited by a sinusoidal voltage source, as shown.

Calculate the following:

- (a) The load reflection coefficient $\Gamma_{\rm L}$
- (b) The standing wave ratio *S* on the line.
- (c) Find all the V_{max} and V_{min} positions (in actual lengths) on the line and present your results in a table form.
- (d) Find the input impedance Z_{in} seen at each V_{max} and V_{min} position.
- (e) Find $\frac{1}{2}$ the input impedance Z_{in} seen at the source end of the line and draw the equivalent lumped circuit with respect to the source end.
- (f) Find the phasor voltages V_S , V^+ , V^- , and V_L .
- (g) Find the V_{max} and V_{min} values.
- (h) Find the time-average powers P^+ , P^- , P_{RS} , P_{L} , and P_{source} . What percentage of the power carried by the incident wave reflects back to the source?
- (i) (Optional) Find the positions on the line where $Z_{in}=Z_0+jX_{in}$. Find X_{in} values at these positions.
- (j) (Optional) Find the I_{max} and I_{min} positions on the line.
- (k) (Optional $\$) Find the I_{max} and I_{min} values.
- (1) Repeat all the above calculations for a load impedance of $Z_L=25+j25 \Omega$.
- (m) How many locations is Waldo hiding on this handout?

An Important Reminder Note:

EE 301-Midterm # 2 is scheduled for Wednesday, April 12, 2017! ☺ (It will be in-class closed-book exam. Two¼ formula sheets will be allowed.)