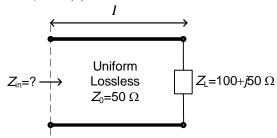
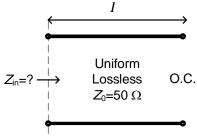
University of Portland School of Engineering

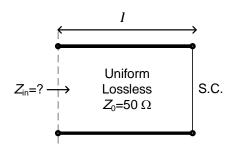

EE 301 Spring 2018 A. Inan

Homework #5

(Assigned: Friday, March 9, 2018) (Due: Friday, March 23, 2018, 11:25a.m.)

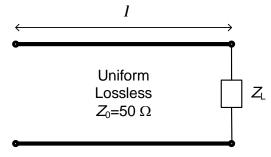

Inan problem # 3: Input Impedance of a Transmission Line Circuit.

For the uniform lossless 50 Ω transmission line circuit shown, find the input impedance Z_{in} of this transmission line for the following line lengths: (a) $l = 0.125\lambda$; (b) $l = 0.25\lambda$; (c) $l = 0.375\lambda$; (d) $l = 0.5\lambda$; and (e) $l = 1.25\lambda$.


Inan problem # 4: Input Impedance of a Transmission Line Circuit.

A uniform lossless $50~\Omega$ transmission line is terminated with an open-circuit termination as shown. Find the input impedance Z_{in} of this transmission line for the following line lengths: (a) $l = 0.125\lambda$; (b) $l = 0.25\lambda$; (c) $l = 0.375\lambda$; (d) $l = 0.5\lambda$; and (e) $l = 1.25\lambda$.

Inan problem # 5: Input Impedance of a Transmission Line Circuit.


A uniform lossless 50 Ω transmission line is terminated with a short-circuit termination as shown. Find the input impedance Z_{in} for the following line lengths: (a) $l = 0.125\lambda$; (b) $l = 0.25\lambda$; (c) $l = 0.375\lambda$; (d) $l = 0.5\lambda$; and (e) $l = 1.25\lambda$.

Inan problem # 6: Load Reflection Coefficient and Standing Wave Ratio.

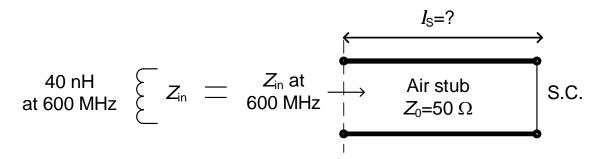
For the 50 Ω transmission line shown, find the load reflection coefficient $\Gamma_{\rm L}$ and standing-wave ratio S for each of the following load impedances: (a) $Z_{\rm L} = 50 \Omega$; (b)

$$\begin{split} Z_{\rm L} &= 250\,\Omega\,;\, \text{(c)}\ \ Z_{\rm L} = 25\,\Omega\,;\, \text{(d)}\ \ Z_{\rm L} = \infty\,\Omega\,;\, \text{(e)}\ \ Z_{\rm L} = 0\,;\, \text{(f)}\ \ Z_{\rm L} = j100\,\Omega\,;\, \text{(g)}\\ Z_{\rm L} &= 100 + j100\,\Omega\,;\, \text{and (h)}\ \ Z_{\rm L} = 50 - j100\,\Omega\,. \end{split}$$

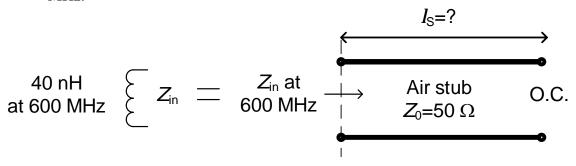
Inan problem # 7: Design a Capacitor Using a Stub.

(a) Design a 40 nF capacitor using a short-circuit terminated 50 Ω air stub at 600 MHz. (That is, the input impedance of the 50 Ω short-circuited air stub will equal to the impedance of the 40 nF capacitor at 600 MHz.)

$$\begin{array}{c} I_{\mathbb{S}}=? \\ \hline \\ \text{at 600 MHz} \end{array} \longrightarrow \begin{array}{c} Z_{\text{in}} \text{ at } \\ \hline \\ Z_{0}=50 \ \Omega \end{array} \qquad \text{S.C.}$$


(b) Design a 40 nF capacitor using an open-circuit terminated 50 Ω air stub at 600 MHz.

40 nF
$$Z_{in}$$
 = Z_{in} at Z_{in} Air stub $Z_{0}=50 \Omega$


- (c) Compare the stub lengths of parts (a) and (b) and comment.
- (d) Repeat parts (a) and (b) at 1.2 GHz.

Inan problem #8: Design an Inductor Using a Stub.

(a) Design a 40 nH inductor using a short-circuit terminated 50 Ω air stub at 600 MHz.

(b) Design a 40 nH inductor using an open-circuit terminated 50 Ω air stub at 600 MHz.

- (c) Compare the stub lengths of parts (a) and (b) and comment.
- (d) Repeat parts (a) and (b) at 1.2 GHz.

Please use the following guidelines for your homework solutions:

- 1) On the first sheet, at the top center, write: Homework #5-Solutions.
- 2) Provide <u>your full name</u> on the upper right corner of the first sheet.
- 3) Also write: EE 301/Spring 2018 on the upper left corner of the first sheet.
- 4) Solve each problem on a separate sheet unless your solution is very short.
- 5) Box all of your answers.
- 6) Staple your solutions in the above order before you turn them in.

Please turn in your homework on time.