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Infectious diseases are the second leading cause of death worldwide[1]. From the Black 

Death of the Middle Ages, to the current Ebola crisis in Western Africa, infectious diseases 
have been and will continue to be a threat to the human race. Infectious diseases can also 
cause devastation to livestock or crops.  For example, Phytophthora infestans decimated 
Ireland’s potato crop in the early 19th century which led to the Irish potato famine. 

Compartment-based modeling is a very common type of model for infectious diseases.  
It considers a set of different “compartments” to demonstrate how the population can move 
through the course of a disease. Common compartment-based models are SEIR, SIR, SIS 
and SI. Figure 1 shows an example of the SEIR model structure. 

 

The Power of Theory 

Future Work 
An area of interest is how the concept of assortative mating affects the dynamics of 

disease spread. Currently all of our models assume a homogeneous population, where the 
likelihood of disease transmission is the same for each pair of individuals connected by an 
edge on the graph.  Under the assumption of assortative mating, some individuals interact 
more with certain groups than with others.  To accurately model this scenario, we need to 
reassess the transmission probabilities according to these preferences. This would give a 
more reliable prediction for how non-random interactions work in a population and how these 
various groupings affect the transmission of a disease. 

We are also interested in investigating how the disease dynamics are affected by 
network parameters, such as the diameter of a given network (defined as the largest 
distance between any two nodes in the graph) and the mean or median distance between 
nodes in the network.   
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Contact networks (a.k.a., graphs) are structures comprised of nodes and edges that 
represent hosts and their possible connections to other hosts.  There are several important 
characteristics of a contact network, such as the mean degree, the diameter, the network 
structure, etc., that can give insight into the spread of a particular infectious disease[1,2].  

Two key assumptions are often made to simplify the modeling process: 1) the 
assumption of homogeneity postulates that all hosts have the same individual characteristics; 
2) the uniform mixing assumption, which can be modeled by a complete graph (shown in 
Figure 3), postulates that each host is equally likely to have contact with every other host in 
the system. 

As network structure can drastically influence disease dynamics, we are interested in 
modeling the effects of various contact networks for different diseases.  Below are two 
example contact networks.  

 Mathematical theory can also provide key predictions for the disease. Of particular 
importance is the size of the basic reproductive ratio (R0), the mean number of secondary 
infections caused by an average index case in an entirely susceptible population. R0 can be 
determined using infection rates in continuous-time models, or infection probabilities in 
discrete-time models: 
 
 
Theorems 1 and 2 and Figures 6 and 7 below reveal an important connection between the 
value of R0 and the likelihood of a major outbreak.[2]   

Figure 3. Complete graph with 9 nodes. Figure 4. Tree, with height of 4, root 
with degree 2, and mean degree 1.935. 

Figure 1. General SEIR model. Here S = Susceptible, 
E = Exposed, I = Infectious, R = Removed. 

Figure 2. Generalized system of equations 
used to model an SEIR model. 
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Theorem 1.1. Assume homogeneity of hosts and uniform mixing in an SEIR-, SIR-, or SIS-model.

If R
0

 1 and if the populations size is large, then with probability very close to 1, introduction of

a single index case into an otherwise susceptible population will result only in a minor outbreak.

There will be a constant B such that the expected number of hosts who will experience infection at

some time during the outbreak will not exceed B, regardless of the population size N .

Theorem 1.2. Assume homogeneity of hosts and uniform mixing in an SIR- or SEIR-model. If

R
0

> 1, then there are numbers r(1), z1 that satisfy the inequalities 0 < r(1), z1 < 1 such that

as long as the population size is large, the with probability very close to 1 � z1, introduction of a

single index case into an otherwise susceptible population will result in a major outbreak with final

size close to r(1).
The number r(1) will be larger for larger values of R

0

and the number z1 will be smaller for larger

values of R
0

.

4. Let x be a real number. Prove that there is only one real number y such that x+ y = 0.

For the sake of contradiction let z 2 R s.t. x+ z = 0 and y 6= z because y is unique.

x+ z = 0 x+ y = 0

x+ z = x+ y

z = y

By contradiction, 9 an unique y s.t. x+ y = 0
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Although time can be modeled as 
discrete or continuous, here we focus only 
on continuous-time models. To understand 
how the hosts will move throughout the 
compartments we can use a system of 
differential equations. For example, a 
general SEIR model as shown in Figure 1 
can be modeled by the system of equations 
in Figure 2. 

Movement to and from each of the 
compartments is based both on the amount 
of hosts in the compartments as well as 
probabilities that hosts will interact and that 
certain interactions will be “successful”. For 
example, β is the rate at which hosts move 
from the Susceptible compartment to the 
Infectious compartment. However, β 
depends on both the probability of direct 
contact between hosts i and j (ci,j), as well 
as the probability that a sufficient number of 
pathogens will be transmitted from host j to i 
(vi,j). In short: β ≈ ci,jvi,j  
 

 To visualize the disease dynamics and to assist in model predictions, we are using a 
program developed by Just, Callender, and Lamar[3] written in the agent-based 
programmable modeling environment NetLogo[4]. Three central parameters in each of our 
models are: infection-prob, end-infection-prob, and end-latency-prob. Each probability 
corresponds to the movement of hosts between compartments. In a standard SIR model, the 
rate of growth in the infectious category—also called incidence—coincides with the 
probability for individual hosts to become infectious (i.e., an infection-prob of 0 means the 
individual will never become infectious; an infection-prob of 1 means it will be infectious by 
the next time step).  

 Since latency corresponds to an E compartment (exposed but not infectious), end-
latency-prob in an SIR model is 0. A screenshot of the NetLogo program is shown in Figure 
5, along a regular lattice contact network. Prevalence, the total number of infectious hosts at 
a given time, is graphed in the bottom right, showing the respective percentage of nodes 
which are susceptible (green), infectious (red), and removed (grey).  

  
  

Figure 5. Regular Lattice graph with an ongoing infection   

Mathematical modeling can provide insight into the effectiveness of control measures in 
delaying or reducing the probability of a major outbreak.  All measures have advantages and 
disadvantages that must be balanced to find the most practical result. For example, border 
control is effective in delaying an outbreak, yet costly and difficult to impose. Such a delay is 
useful in order to develop a way of reducing the outbreak size. Other control measures may 
only reduce the outbreak size; e.g. behavior modification, quarantine, culling (for some plant 
or animal diseases), and vaccinations. Rarely do methods both delay and reduce the final 
outbreak.  

Epidemiologists use final size, the proportion of individuals in the population who 
experienced infection at some point during the outbreak, to measure the severity of an 
outbreak. Vaccinations tend to be the most efficient at reducing the final size, and a 
surprising phenomenon called herd immunity plays a large role in this result. The herd 
immunity threshold, denoted by K, defines the minimum proportion of the population that 
needs to be vaccinated in order to make the probability of contracting the disease sufficiently 
small. K can be calculated using the reproductive ratio, R0, and the total population size, N:  

 
 
 

Figure 7. Erdös-Rényi random graph 

 Figure 7 shows an example of an infection that 
began at node 0 in an Erdös-Rényi random graph and 
has infected one additional node. If a sufficient 
proportion of nodes were initially vaccinated, the 
probability of an individual actually contracting the 
disease is vanishingly small. Figures 8 and 9 show the 
effects of vaccinating a fraction of the population when 
the underlying contact network is an Erdos Renyi graph. 

Figure 8. Outbreak with no control 
measures for a population of size 100.  
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Figure 9. Outbreak with 30 individuals 
vaccinated in a population size of 100. 
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   Figure 6. Frequencies of 

individuals experiencing 
i n f e c t i o n f o r t h r e e 
different values of R0 in a 
population of 120 on a 
complete network.  100 
simulations were run for 
each R0 value.  Here we 
note that the majority of 
outbreaks (but not all) 
are minor when R0<1, 
and the majority (but not 
all) are major when R0>1. 
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