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Figure 1. Erdős-Rényi graph

with 10 nodes and expected

mean degree (λ, the number

of edges per node) equal to 3.
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Vaccination Strategies and Herd Immunity 

Thresholds in Small World Models

Infectious diseases pose a serious threat to humans, plants, and animals[1]. Though vaccines

can help control outbreaks of infectious diseases, there is typically not enough vaccine available for

the entire population. In this case, certain vaccination strategies can be employed to maximize the

benefits for the entire population. Using results from graph theory and the simulation tool IONTW

(Infections On NeTWorks), we investigate various vaccination strategies on certain types of so-called

contact networks that model the patterns of interactions within a population. In particular, we focus

on a certain class of contact networks known as small world models, where individuals are randomly

“connected”, i.e., can transmit and/or contract an infectious disease, along paths that are relatively

small in relation to the overall population size[2]. These types of networks tend to provide good

estimations of the interactions of real populations when the exact contact network is unknown.

However, the complexity and stochasticity of such networks create challenges in determining the

best vaccination strategy. Here we discuss our preliminary results for vaccination strategies on small

world models, including how many vaccines are needed (a notion related to a concept called the

herd immunity threshold) and, for a given amount of vaccine, which individuals should be vaccinated

in order to minimize the probability of major outbreaks.

Contact networks are represented as mathematical graphs[3]. A mathematical graph consists of

nodes (also called vertices) and edges. In our graphs, nodes represent people and edges represent

interactions people have in which the disease could be transmitted. Our research focuses on three

types of contact networks: Erdős-Rényi random graphs (e.g., Fig. 1), Nearest Neighbor 1-
dimensional and 2-dimensional graphs (e.g., Fig. 2), and Small world models (e.g., Fig. 3),

which are constructed by taking the union of an Erdős-Rényi and a Nearest Neighbor graph. In

Figures 1-3, nodes with green outlines are susceptible and nodes with red outlines are infectious.

Figure 2. Nearest Neighbor 1
graph with 10 nodes and mean

degree (d) equal to 2.

Figure 3. Small World 1
model with 10 nodes; union of

Nearest Neighbor 1 with d=1

and Erdős-Rényi with λ=3.
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All of our simulations are run using IONTW (Infections On NeTWorks)[4], which was developed in

the agent-based programming language of NetLogo[5]. This software allows the user to develop a

highly customized model, with a variety of options for contact networks, disease parameters, and

initial state configurations. In particular, the user can easily test the efficacy of various vaccination

strategies (e.g., Fig. 4), a primary focus of our research.

Simulations in IONTW
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Figure 4. Snapshot of disease progression in a contact network, under a vaccination

strategy where the lower left corner of nodes have been vaccinated (gray nodes).

Here we investigate the Herd Immunity Threshold (HIT) for small world models ,

where dim = 1, 2; N is the population size; d governs the degree of nodes from the Nearest

Neighbor graph; and λ is the expected mean degree from the Erdős-Rényi graph.

Primary goal: Since our small world models are random networks, we seek to find a proportion, HIT,

of hosts to vaccinate (at random) such that as N → , the probability that an outbreak is a major

one approaches 0. Restated: We seek to find an HIT such that all outbreaks are limited to minor

ones asymptotically almost surely (a.a.s.)[1].

Figures 5 and 6 suggest the existence of an HIT, but further research is needed to determine the

precise dependence of the HIT on a, b, d, and λ. In each of these figures, the histogram reveals the

number of simulations (out of 200 total runs) in which certain percentages of the susceptible

population experienced infection.
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Here we consider the same small world models, but assume that we only have a fixed number of

vaccines (v), whose proportion to the population was presumably less than the HIT. Our goal is to

rigorously define two vaccination strategies: B(x) and H(x), where B(x) would create evenly spaced

“barriers” within the population, and H(x) would vaccinate only those individuals with the highest

degrees. Then we strive to determine whether B(x), H(x), or some combination of the two will be the

best vaccination strategy.

Best strategy: B(x) (see, e.g., Fig. 7)
Define the following:

• v = # of vaccines available

• d = (degree of each node)/2

• c = v/d = # of vaccinated clusters of size d

• s = (N-v) / (v/d) = size of susceptible clusters

• B(x), which returns 1 if node x should be vaccinated and 

0 if node x should remain susceptible and is defined by:

Best strategy: H(x) (see, e.g., Fig. 8) combined
with B(x), as described in the flowchart below.
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Our first task was to determine whether or not the HIT existed for small world models .

We have obtained promising results that suggest this threshold does in fact exist, but more research

is needed to verify this proposition and to determine the relationship between the HIT, the network

parameters d and λ, and the disease parameters a and b. This remains an area of focus for our

research team.

Next we set out to determine the best vaccination strategies for various small world models. We

found a formula for the best strategy for 1-D networks where λ=0, and we have a proposed best

strategy for λ≠0. Our future work will include attempts to rigorously prove these are in fact the best

strategies. We also have preliminary results for the best strategy for 2-D networks (see Figs. 9 and

10), but this remains a work in progress.

Once rigorous proofs have been obtained for our proposed best vaccination strategies, we plan to

investigate additional scenarios, including those in which only certain individuals are actually able to

receive vaccination, whether it be to logistical issues or health reasons. We would also like to look

into how our strategies should be modified in the case where we allow for rewiring of the original

contact network during the course of the outbreak.

The task of developing vaccination strategies for 2-

dimensional small world models, , is significantly

more challenging than for 1-dimensional models. The simplest

case is when λ=0 and d=1 (each node is only connected to the

nodes within a radius of 1) and there is enough vaccine for 50%

of the population. Here, the best strategy is to vaccinate nodes

along every other diagonal (see Fig. 9). In this case, no matter

where the initially infected node is located, the infection cannot

spread to any other node.

To make this process more rigorous, we first map each node to

the Cartesian plane using the following, for networks in which N is

a perfect square:

where (X(x), Y(x)) is the ordered pair corresponding to node x.

To vaccinate every other diagonal, vaccinate all nodes on the line

for such that

Figure 9. B(x) vaccination

strategy when amount of

available vaccine is 50% of

the population.

Figure 7. Example of B(x) strategy 

for a                           network.G1
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Figure 10. B(x) vaccination

strategy when amount of

available vaccine is ~39% of

the population.

G1
SW (15,2,0)

G1
SW (15,2,2)

1

2

Figure 5. Histogram for % of infected susceptibles

on a network with a=1, b=0.5, when

vaccinating various percentages of the population.
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Figure 6. Histogram for % of infected susceptibles

on a network with a=1, b=0.5, when

vaccinating 60% of the population, for varying N.
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Figure 8. Example of H(x) strategy 

for a                           network. 
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Formula for Vaccination Strategy for One Dimensional
Nearest Neighbor Graphs

Emma

October 1, 2018

1 Defining the Variables and Deriving a Formula

Let G be a one dimensional nearest neighbor graph. Suppose we have v vaccines to distribute.
Then we have v/d clusters of vaccine to distribute, and would leave N � v nodes susceptible.
In order to distribute the clusters of vaccines evenly throughout the graph G, we need to find how
many susceptible nodes should be between each cluster. This can be found by dividing the number
of susceptible nodes by the number of clusters of vaccine we have: (N � v)÷ (v/d)

For simplicity of our formula, let the size of the clusters of susceptible nodes be represented by
s = (N � v)÷ (v/d) and the size of the clusters of vaccinated nodes be represented by c = v/d

Now we can define a function that determines if a node, v
x

, should be vaccinated, f(v
x

) = 1 , or
remain susceptible, f(v

x

) = 0 .
f(x) = 8

<

:

1, x ⌘ m (mod d+ s) : 0 < m  d

0, x ⌘ m (mod d+ s) : d < m < d+ s

0, x ⌘ 0 (mod d+ s) : m = 0

Hannah’s proposition:
f(x) = ⇢

0 x ⌘ m (mod d+ s) : 0  m  s

1 x ⌘ m (mod d+ s) : d < m  d+ s

1
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1. Deriving a formula

First we must define a function that takes nodes from a two dimensional nearest neighbor graph to

a Cartesian plane:

Conside

X(x) = (x� 1)(mod

p
N)

Y (x) =

(x� 1)�X(x)p
N

Where (X(x), Y (x)) is the point on a Cartesian plane corresponding to the node x.

To vaccinate every other diagonal, vaccinate all the nodes that are on the lines y = x+2c for c 2 Z
such that |c|  (N�2)

2

3

1. Deriving a formula

First we must define a function that takes nodes from a two dimensional nearest neighbor graph to

a Cartesian plane:

Conside

X(x) = (x� 1)(mod

p
N)

Y (x) =

(x� 1)�X(x)p
N

Where (X(x), Y (x)) is the point on a Cartesian plane corresponding to the node x.

To vaccinate every other diagonal, vaccinate all the nodes that are on the lines y = x+2c for c 2 Z
such that |c|  (N�2)

2

3

1. Deriving a formula

First we must define a function that takes nodes from a two dimensional nearest neighbor graph to

a Cartesian plane:

Conside

X(x) = (x� 1)(mod

p
N)

Y (x) =

(x� 1)�X(x)p
N

Where (X(x), Y (x)) is the point on a Cartesian plane corresponding to the node x.

To vaccinate every other diagonal, vaccinate all the nodes that are on the lines Y (x) = X(x) + 2c

for c 2 Z such that |c|  (
p
N�2)
2

3

1. Deriving a formula

First we must define a function that takes nodes from a two dimensional nearest neighbor graph to

a Cartesian plane:

Conside

X(x) = (x� 1)(mod

p
N)

Y (x) =

(x� 1)�X(x)p
N

Where (X(x), Y (x)) is the point on a Cartesian plane corresponding to the node x.

To vaccinate every other diagonal, vaccinate all the nodes that are on the lines Y (x) = X(x) + 2c

for c 2 Z such that

|c|  (
p
N�2)
2

|c|  (
|c|  (

p
N�2)
2 if

p
N is even

|c� 1
2 | 

(
p
N�1)
2 if

p
N is odd

3

1. Deriving a formula

First we must define a function that takes nodes from a two dimensional nearest neighbor graph to

a Cartesian plane:

Conside

X(x) = (x� 1)(mod

p
N)

Y (x) =

(x� 1)�X(x)p
N

Where (X(x), Y (x)) is the point on a Cartesian plane corresponding to the node x.

|c|  (
Y (x) = X(x) + 2c if

p
N is even

Y (x) = X(x) + (2c� 1) if

p
N is odd

To vaccinate every other diagonal, vaccinate all the nodes that are on the lines Y (x) = X(x) + 2c

for c 2 Z such that

|c|  (
p
N�2)
2

|c|  (
|c|  (

p
N�2)
2 if

p
N is even

|c� 1
2 | 

(
p
N�1)
2 if

p
N is odd

3

http://www.ohio.edu/people/just/IONTW/
http://ccl.northwestern.edu/netlogo/

