
Oval and OvalPlot:

Programs for analyzing dense particle assemblies

with the Discrete Element Method

Matthew R. Kuhn∗, kuhn@up.edu

June 1, 2006
Versions Oval-0.6.18 and OvalPlot-0.4.2

1 Introduction

Oval is a program for DEM analysis of particle assemblies. The program
is freely distributed under the open source GNU General Public License,
Version 2. The Discrete Element Method (DEM) is a method for simulating
the motions and interactions of the individual particles in a granular material
while the entire assembly is being deformed (Cundall and Strack 1979).
Perhaps most important, the method allows extracting the global averages
of such quantities as stress and fabric for the entire assembly as well as
the micro-level quantities, such as particle movements and contact forces.
The program Oval is primarily intended for analyzing dense assemblies (as
opposed to diffuse assemblies) that are roughly rectangular in shape, such
as in so-call element tests. Oval can also be used to compact a diffuse
assembly into a denser state.

The program handles both two- and three-dimensional simulations with
particles that are either circles (2D), ellipses (2D), ovals (2D), spheres (3D),
or a special non-spherical “ovoid” particle (3D). The program has been
compiled and run on both Unix and Windows systems.

OvalPlot is a program for graphically displaying the results of 2D
Oval simulations. The program displays a spatial representation of the
micro-mechanical processes that occur as the assembly is deformed. OvalPlot

is intended for two-dimensional assemblies only.
If you plan to use Oval and OvalPlot, please send me an email mes-

sage so that you are kept informed of future upgrades to the package. If you

∗Dept. of Civil Engineering, University of Portland, 5000 N. Willamette Blvd., Port-
land, OR 97203 USA, Fax 503–943–7316, Tel 503–943–7361, kuhn@up.edu.

1

find errors, please let me know. If you modify the source code, please give
the code a new name. For example, if you make changes to the original file
oval-0.7.114.f, then rename the file oval-0.7.114-your name.f.

The programs Oval and OvalPlotare free software; you can redis-
tribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version. These programs are
distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a par-
ticular purpose. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place—Suite 330, Boston, MA 02111-1307, USA.

2

2 Contents

1 Introduction 1

2 Contents 3

3 Capabilities and limitations 8
3.1 Capabilities and limitations of Oval 8
3.2 Capabilities and limitations of OvalPlot 9
3.3 Things to do . 10

3.3.1 Things to do: Oval 10
3.3.2 Things to do: OvalPlot 11

3.4 How you can help . 11

4 Availability and installation 12
4.1 Unix systems . 12
4.2 Windows systems . 15

5 Helpful/essential utilities 15

6 Running Oval 18

7 Boundary Types 19
7.1 Periodic boundaries . 19
7.2 Tight-fitting particle boundaries 19
7.3 Rigid-flat boundaries . 21
7.4 External-particle boundaries 21

7.4.1 ipvers . 22
7.4.2 ixfix(1) . 22
7.4.3 idirec . 22
7.4.4 nplt . 22
7.4.5 rad,xp(1) . 22

8 RunFiles for Oval 22
8.1 RunFile: General information section 23

8.1.1 title . 23
8.1.2 algori . 23
8.1.3 ivers . 25
8.1.4 ncownt . 26
8.1.5 iout(2) . 26

3

8.1.6 iout(3) . 26
8.1.7 istart . 26
8.1.8 iend . 27
8.1.9 iupdtm . 27
8.1.10 icirct . 27
8.1.11 imodel . 27
8.1.12 nplatn . 28
8.1.13 nloop1 . 28
8.1.14 kn or G . 28
8.1.15 kratio . 28
8.1.16 frict . 28
8.1.17 frictw . 29
8.1.18 rho . 29
8.1.19 search . 29
8.1.20 pcrit(1) . 29
8.1.21 pcrit(2) . 29
8.1.22 pcrit(3) . 29
8.1.23 xseed . 30
8.1.24 rmsvel . 30
8.1.25 dt . 30

8.2 RunFile: Deformation-stress path section 31
8.2.1 icontr . 32
8.2.2 defrat . 32
8.2.3 igoal . 32
8.2.4 krotat . 33
8.2.5 finalv . 34
8.2.6 ipts . 34
8.2.7 idump . 34
8.2.8 iflexc . 35
8.2.9 imicro . 36
8.2.10 ibodyf . 36
8.2.11 defdot . 36
8.2.12 ipts2 . 36
8.2.13 iplot . 36

9 StartFile: The initial particle arrangement 36
9.1 Assembly data in D-StartFiles 37

9.1.1 kshape . 37
9.1.2 np, xcell(1,1) . 38
9.1.3 xcell(1,2) . 39
9.1.4 beta . 39

9.2 Particle data in D-StartFiles 39

4

9.2.1 Circle particle data . 39
9.2.2 Oval particle data . 40
9.2.3 Ellipse particle data 41
9.2.4 Sphere particle data 42
9.2.5 Ovoid particle data . 42

10 Text output files from Oval 43
10.1 A-files: macro-data for spreadsheets 44
10.2 B-files: macro-data text files 45
10.3 B-files with 2D simulations 45

10.3.1 timer . 46
10.3.2 defout(i,j) . 46
10.3.3 knrgy . 46
10.3.4 ntacts . 47
10.3.5 chi1 . 47
10.3.6 stress(i,j) . 47
10.3.7 pnrgy . 47
10.3.8 psi . 47
10.3.9 chi2 . 48
10.3.10 chi3 . 48
10.3.11 chi4 . 48
10.3.12 viscbt . 48
10.3.13 slidet . 48
10.3.14 work1t . 49
10.3.15 xloops . 49
10.3.16 viscct . 49

10.4 B-files with 3D simulations 50
10.5 F-files: micro-data text files 50
10.6 F-files for 2D assemblies . 51

10.6.1 Fa-files for 2D assemblies 51
10.6.2 Fb-files for 2D assemblies 52
10.6.3 Fc-files for 2D assemblies 52
10.6.4 Fd-files for 2D assemblies 55

10.7 F-files for 3D assemblies . 55
10.7.1 Fa-files for 3D assemblies 55
10.7.2 Fb-files for 3D assemblies 55
10.7.3 Fc-files for 3D assemblies 56

11 Screen output from Oval 57

12 Sample assemblies for Oval 58

13 Example simulations using Oval 61

5

14 Some advice on using Oval 61

15 The OvalPlot process 65

16 The ConfigFile 69
16.1 title . 69
16.2 path . 69
16.3 iform . 71
16.4 ipaper . 71
16.5 iheadr . 71
16.6 iscal1 . 71
16.7 iscal2 . 72
16.8 icircl . 72
16.9 iarrow . 72
16.10ilabel . 72
16.11ifont . 72
16.12jfont . 73
16.13istran . 73
16.14ncopy . 73
16.15iplast . 74
16.16isub . 74
16.17vivid . 74
16.18mheigh, mwidth . 75
16.19x1min,x1max,x2min,x2max 75
16.20sclwid . 75

17 Creating the G-files 75

18 Running OvalPlot 78

19 Other items on the graphics page 79
19.1 Headers and footers . 79
19.2 Length scale . 80
19.3 Intensity scales . 80

20 Plot types in OvalPlot 81
20.1 Particle location plots (ktype=1) 81
20.2 Particle graph plots of the void cells (ktype=2) 81
20.3 Contact forces (ktype=3) . 83
20.4 Contact force contributions to the average stress (ktype=4) . 83
20.5 Particle movements (ktype=10) 84
20.6 Particle rotations (ktype=11) 85
20.7 Combined particle movements and rotations (ktype=12) . . . 85

6

20.8 Void cell deformations (ktype=13) 85
20.9 Inter-particle movements at contacts (ktype=15) 86
20.10Contributions of inter-particle movements to the average de-

formation (ktype=16) . 86
20.11Contact force rates (ktype=17) 87
20.12Contact force rates contributions to the average stress rate

(ktype=18) . 87
20.13Frictional contact sliding (ktype=22) 87
20.14Energy dissipation at sliding contacts (ktype=23) 88

21 OvalPlot options 88
21.1 Labels on particles and void cells (ilabel) 88
21.2 Actual or relative movements (idef) 88
21.3 Total, normal, or tangential inter-particle effects (inorm) . . . 88
21.4 Filters (ifiltr) . 89
21.5 Magnitudes or alignments (ialin) 90
21.6 Elastic and inelastic movements (ielast) 90

22 Change Log 90
22.1 Oval–0.4.0 to Oval–0.6.0 . 90
22.2 Oval–0.6.0 to Oval–0.6.1 . 91
22.3 Oval–0.6.1 to Oval–0.6.2 . 92
22.4 Oval–0.6.2 to Oval–0.6.3 . 92
22.5 Oval–0.6.3 to Oval–0.6.4 . 92
22.6 Oval–0.6.4 to Oval–0.6.5 . 93
22.7 Oval–0.6.5 to Oval–0.6.8 . 93
22.8 Oval–0.6.8 to Oval–0.6.10 93
22.9 OvalPlot–0.2.0 to OvalPlot–0.4.0 94
22.10OvalPlot–0.4.0 to OvalPlot–0.4.2 94

23 References 94

7

3 Capabilities and limitations

3.1 Capabilities and limitations of Oval

The current version of Oval has the following capabilities and limitations:

1. It can perform discrete element analysis on assemblies containing any
one of the following particle types: circles (2D), ellipses (2D), ovals
(2D), spheres (3D) and non-spherical “ovoids” (3D).

2. At present, it works best with flat periodic boundaries on all sides of a
two- or three-dimensional assembly. For two-dimensional assemblies,
it can also use flexible boundaries; with both two- or three-dimensional
assemblies, it can use rigid boundaries.

3. It can only analyze assemblies with parallel boundaries (i.e. assemblies
of 2D parallelogram and 3D parallelepiped shapes).

4. With 2D assemblies, it can create output files for use with the OvalPlot

graphics program.

5. It can create output files of both macro-results and micro-results. The
macro-result files include information on stress and deformations. The
micro-result files give information on particle positions, particle orien-
tations, contact forces, and system topology.

6. It includes a simple contact force mechanism consisting of linear springs
(both normal and tangential) and a frictional slider. The normal
and tangential spring constants can be specified independently (Sec-
tions 8.1.14 and 8.1.15). The frictional slider can be “turned off”
(Sections 8.1.16 and 8.1.17).

7. It also includes a Hertz-Mindlin contact mechanism, in which the shear
modulus, Poissons ratio, and friction coefficient must be specified.

8. It includes the option of a modified DEM algorithm for self-regulating
and maintaining the quasi-static nature of a simulation (Sections 8.1.2,
10.3.5, 10.3.15, and 14).

9. It includes the following types of damping: translational mass (global)
damping, rotational mass (global) damping, and contact damping (re-
fer to Cundall and Strack 1979). Each may be independently specified
or “turned off” (Sections 8.1.20–8.1.22).

10. It includes a robust servo-control algorithm for controlling the bound-
ary stresses. The deformation (or stress) path is supplied by the user in
a series of steps, which specify in a component-by-component manner

8

either the deformation rate tensor or stress rate tensor. The specified
stress or deformation rate components may be mixed. See Section 8.2.

11. It can create binary “restart” files that allow a new simulation to begin
at the exact ending condition of a previous simulation. These restart
files include all of the position, velocity, and contact information that
allow the new run to begin where the previous run had stopped. See
Sections 8.1.7, 8.1.8, and 8.2.7.

12. It can assign initial random velocities to the particles in the assembly
(Sections 8.1.23 and 8.1.24).

13. As an option, it can prevent particle rotations, particle motions, or
both.

14. It does not yet include gravity effects.

15. The code is not yet parallelized.

3.2 Capabilities and limitations of OvalPlot

The current version of OvalPlot has the following capabilities and limita-
tions:

1. It provides a number of plot types for visualizing an assembly’s par-
ticle arrangement, topology, particle movements and rotations, micro-
deformations within void cells, contact forces, inter-particle move-
ments, etc. (Section 20). There are currently 14 types of plots, and
more are planned (Section 20).

2. It can only accommodate 2D assemblies.

3. It can only accommodate data input in a form that is generated by
the DEM program Oval.

4. At present, it only produces output in LATEX format. (This format can
be converted Postscript, encapsulated postscript, and other graphics
formats.)

5. It can plot either the actual changes in an assembly (movements, ro-
tations, micro-deformations, etc.) or changes relative to the mean
assembly deformation (Section 21.2).

6. It can plot the total movements and forces that occur at particle con-
tacts, or it can plot either the tangential or normal components of
these movements and rotations (Section 21.3).

9

7. It can apply a number of “filters” to the contact forces and movements
(Section 21.4). For example, it can plot the contributions of individual
contact forces to the mean stress of the assembly (Section 20.4). It can
plot either the contribution in magnitude or in direction (Section 21.5).

8. It can separately plot the elastic and inelastic particle movements dur-
ing a loading/unloading cycle (Sections 16.15 and 17).

9. The output plots can be scaled to a particular size or scaled to fit on
USletter or A4 paper (Sections 16.4 and 16.18).

10. It can provide headers and footers to the printed page for easier refer-
encing (Sections 16.5 and 19.1).

11. It can provide a legend that gives the length scale of the plot (Sec-
tions 16.6 and 19.2).

12. It can provide a legend that gives the scale of intensities for the plotted
quantities (Sections 16.7 and 19.3).

13. It can plot a subset of the assembly’s particles (Sections 16.16 and 16.19).

14. It allows adjustments in the font size (Sections 16.11 and 16.12).

15. It can plot tiled multiples of assemblies with periodic boundaries (Sec-
tion 16.14).

16. It allows adjustment of the visual intensities of the plotted quantities
(Section 16.17).

3.3 Things to do

3.3.1 Things to do: Oval

The current version of Oval lacks certain capabilities that are currently
under development. Most of these capabilities have already been completed
for fully circular and spherical particles, but Oval may not yet fully accom-
modate the recent addition of the non-circular and non-spherical particle
types. A partial list of things to do is as follows:

• add code for analyzing the local deformations within the void cells
between particles.

• add code for analyzing strain gradient dependence in granular mate-
rials.

• add code to “turn on” gravity for assemblies that do not have periodic
boundaries.

10

• make available binaries for other platforms and operating systems on
the web site.

Many of these capabilities are currently represented by empty subroutines
that simply serve as “place holders” for the final code.

If you plan to use Oval, then please send an email message to the address
on the front page, so that you can be kept informed of any upgrades and
corrections to the package.

3.3.2 Things to do: OvalPlot

The following additions to OvalPlot are currently planned:

• add code to produce SVG output. OvalPlot is very cumbersome
to use. With XML-based SVG output, the files could be displayed
immediately with a suitably equipped file browser, such as Firefox,
without having to compile Latex code. SVG graphics can also be
edited within Adobe Illustrator, Inkscape, etc.

• add code to plot contact forces, contact deformations, and micro-
deformations for ellipse and oval particles.

• add code for producing “contact dislocation lines”, as described by
Murakami, Sakaguchi, and Hasegawa (1997).

• add code for plotting particle rotations and rotation gradients in the
vicinity of individual void cells.

• add code to plot the separate effects of contact rolling and sliding.

If you plan to use OvalPlot, then please send an email message to the
address on the front page, so that you can be kept informed of any upgrades
and corrections to the package.

3.4 How you can help

You can help in the development of Oval and OvalPlot in a number of
ways:

• send bug reports to the email address on the first page.

• send binaries for other platforms and operating systems.

• send your own StartFiles of initial particle arrangements. It would be
nice to have a catalog of particle arrangements with various shape
distributions, size distributions, densities, and anisotropies.

• develop drivers for other graphics formats.

• add an index to this document?

11

4 Availability and installation

The program is written in a rather inelegant dialect of Fortran 77. Source
code is freely available under terms of the open source GNU General Public
License (GPL), version 2. The entire program can be downloaded from the
author’s web repository at

http://faculty.up.edu/kuhn/oval

including the source code, executable binaries, this documentation, sample
assemblies, and other example files. To install the program you should follow
the steps that are described below.

4.1 Unix systems

1. Download oval-latest.tar.gz from the web site. This file is a sym-
bolic link to the latest version of the software, although some earlier
versions may also be archived at the site.

2. Send an email message to the address on the front page of this doc-
umentation, so that I can keep you informed of any upgrades and
corrections to the Oval package.

3. Create a directory for the program. Place the oval-latest.tar.gz

file into the directory, and then uncompress the file:

gunzip oval-latest.tar.gz

The directory should now contain the archive file oval-latest.tar.

4. Extract the contents of the file:

tar xvf gunzip oval-latest.tar

This command will create several new subdirectories and unpack the
contents into those directories:

source the Fortran source files, including the following files:
oval-X.X.XX.f

common-X.X.XX

ovalplot-X.X.XX.f

common-plot-X.X.XX.f

dsort.f

texdraw oval.tex

12

bin executable binary files. These files include the author’s
i586 Linux and Windows binaries and any other con-
tributed binaries.

doc this and other documents in various formats.

samples sample assemblies and example input files for both Oval

and OvalPlot.

I recommend that you write-protect all of these files to prevent their
corruption, since you will likely want to use them as templates for your
own code changes and simulations.

5. If you are using Linux on an i586 machine, you can use the author’s
executable binary files oval and ovalplot, which are found in the
directory bin/linux i586. Otherwise, you may need to compile the
program for your own platform or operating system. This will cer-
tainly be necessary if you modify the source code for your own special
purposes. The program has, at various stages in its development, been
compiled on the following platforms: a DEC MicroVAX workstation,
a DEC VAX750 mainframe, a Data General mainframe, Sun SPARC
ipx workstations, a Pentium III PC (Linux Caldera 2.3, Suse 6.3, and
Mandrake 7.2), and an Athlon PC (Mandrake 8.1). Recent devel-
opment has been primarily on Linux platforms using, the GNU g77,
Portland Group pgf77, and Intel ifc Fortran compilers.

6. If necessary, compile Oval and OvalPlot as you would compile any
Fortran program, using your resident compiler while in the appropriate
directory:

f77

g77

pgf77

etc77

-o oval {your options here} oval-X.X.XX.f

and

f77 -o ovalplot {your options here} ovalplot-X.X.XX.f

where X.X.XX is the appropriate version of the Fortran source code.
With these commands, the output binary (executable) files will be
named oval and ovalplot. The following five files must reside in the
same directory for the compile to work:

oval-X.X.XX.f

common-X.X.XX

ovalplot-X.X.XX.f

13

common-plot-X.X.XX

dsort.f

The file dsort.f contains the quick-sort subroutine dsort written
by R. E. Jones and J. A. Wisniewski as part of Sandia Laboratory’s
SLATEC repository. It is separately licensed.

You may wish to consider your own options when compiling the source
Fortran code. For example, you may want to try improving the pre-
cision by using something like a “-r8” option, which forces the use
of double precision, 8-byte floating point numbers. For very large as-
semblies, you may need to use something like “-i4” to force the use
of 4-byte integers for indexing the many particles and contacts (you
will also need to change the value of the parameter “mp” in the common
file). Some compilers offer options for optimizing the binaries (perhaps
“-fast” or “-O”) and for producing the extra information required by
debuggers (perhaps “-g”). Consult your compiler’s manual for the
actual usage.

There are several aspects of the oval-X.X.XX.f code that are not
true Fortran 77 and many lead to compiling errors or warnings. These
include the following:

• the use of the compiler-local “include” statement that inserts
code from the files common-X.X.XX.f and commonplot-X.X.XX.f

into the bodies of the oval-X.X.XX.f and ovalplot-X.X.XX.f

code.

• the occasional use of “do while” loops

• use of the compiler-local functions rand and srand for creating
and seeding random number sequences.

These variances are accommodated by both the g77 and pgf77 com-
pilers.

7. You may want to place the executable files oval and ovalplot into
an appropriate bin directory on your system’s search $PATH. You may
also want to use symbolic links to your entire oval directory or to
specific files and subdirectories.

8. Several utility programs will help in using Oval and OvalPlot, and
these utilities are described in Section 5. All of these utilities are
standard on most Unix/Linux distributions.

14

4.2 Windows systems

1. Download the file oval-latest.zip from the web site (page 12). This
file is a symbolic link to the latest version of the software, although
some earlier versions may also be archived at the site.

2. Create a directory (folder) for the program files. Unzip the file

oval-latest.zip

using PKUNZIP or a similar utility, placing its contents into the new
directory. This will both extract and uncompress the files. The direc-
tory should now include a number of new subdirectories, which were
listed and discussed in item 4 on page 12.

3. You can use the author’s binaries oval and ovalplot in the bin/windows
directory. If you make any changes to the program source files, you
will need to recompile the program to create your own executable files.
The procedure is described in item 5, page 13.

4. Several utility programs will help in using Oval OvalPlot, and these
utilities are described in Section 5. Without these utilities, you will
probably have difficulties in running Oval and creating the graphics
plots.

5 Helpful/essential utilities

Besides the binaries for Oval and OvalPlot, a number of utilities will be
useful (and, in some cases, essential). All of these utilities are standard on
Linux systems, so unless your Linux installation is of the barest extent, these
utilities should already be available. For Windows systems, you will likely
need to download at least some of these utilities, although all are available
in freeware, shareware, or commercial forms. The various utilities are listed
in Table 1 and discussed below.

1. a text editor. To use Oval and OvalPlot, you will need a text
editor for creating the input files and reading the output files. I would
suggest that Microsoft Word and WordPad be avoided as text editors,
because of the residue “line feed” characters that they can embed
in your text files. Windows users will want to search the web for
a real text editor. (You can try http:www.zdnet.com and search for
“text editor”, which will lead you to perhaps hundreds of downloadable
candidates, complete with reviews.) The editor should be capable of
accommodating widths of 112 columns, as this is the size of certain

15

Item Description

1 text editor
2 spreadsheet
3 Fortran compiler and debugger
4 LATEXpackage
5 dvi viewer
6 ps viewer and print utility
7 Postscript-to-pdf converter
8 pdf viewer and print utility
9 ps-to-eps converter

10 data analysis software

Table 1: Helpful and essential utilities

input files. Your Windows Fortran compiler may already include a
text editor or shell environment.

2. spreadsheet software such as Excel (commercial) or Gnumeric and
OpenOffice.org (open source).

3. a Fortran compiler and debugger. Both the open source g77/gdb and
robust commercial compilers and debuggers are available for Unix sys-
tems. On Windows, commercial compilers are available. Also con-
sider the Windows porting of the gcc/g77/gdb utilities. This package,
named djgpp, can be downloaded as a set of zip-files from

http://www.delorie.com/djgpp/

(thanks Miklós!).

The only problem with the free gdb debugger is that it may not support
the use of Fortran common statements, which are liberally used in the
Oval and OvalPlot packages. The 3.0 version of gdb, currently
available for Unix/Linux, supposedly supports common statements, but
I haven’t tested this yet.

4. the LATEX package for document preparation, including the following
standard style files

fancyheadings.sty

texdraw.sty

texdraw.tex

txdps.tex

16

and the author’s set of custom macros for color extensions to the tex-
draw package:

texdraw_oval.tex

You will be unable to display your OvalPlot graphics without LATEX
and these supplementary files. You will probably also need the dvi-to-
postscript converter dvips.

The entire LATEX package is standard with nearly all Linux distribu-
tions (or the prepackaged teTEX LATEX package can be downloaded
in tar, rpm, or dbm formats). On Windows systems, you will want
to download and install the MiKTEX package, which includes LATEX
and the most common utilities. For downloads of MiKTEX, start your
search at the web site http://www.ctan.org.

5. a dvi file viewer. These viewers are standard on Linux systems (xdvi,
kdvi, etc., or download as part of the teTEX package. I have found that
xdvi more faithfully renders the images) and are part of the MiKTEX
package for Windows.

6. a postscript viewer and print utility. These are also standard on Linux
systems (ghostview, gv, ggv, etc.) The Ghostscript and GSview pack-
ages are freely available for Windows from the following web site:

http://www.cs.wisc.edu/~ghost/

The commercial Adobe Acrobat suite also contains a postscript viewer.

7. a postscript-to-pdf converter. The standard Linux utility ps2pdf will
convert your postscript files to a pdf format. On Windows systems,
the commercial Adobe Distiller will also perform this task.

8. a pdf viewer. The freely available Adobe Acrobat Reader will serve
this purpose, as will the Linux utility xpdf.

9. a ps-to-eps converter. Postscript (ps) graphics can be embedded in a
document by first converting the postscript (ps) file into an encapsu-
lated postscript (eps) format. The Linux utility psfixbb does a nice job
of this. Refer to the following web site:

http://www.strw.leidenuniv.nl/~dominik/Tools/psfixbb/

The command structure is

psfixbb -o <file_name>.exp <file_name>.ps

17

If it doesn’t work the first time, try changing the first line of psfixbb
to give your perl location (try the command: which perl).

10. data analysis software. If you want to perform your own analysis of the
micro-level F-files, you will probably wand to use an analysis package
such as Matlab, Octave, Scilab, or R.

6 Running Oval

Oval is not yet an interactive program with a graphical user interface.
At present, it runs only in a batch mode. Sections 15 and 17 discuss the
integration and running of Oval and its graphics post-processor OvalPlot.
In the current section, we consider only the running of Oval.

You would normally run Oval from within a terminal (e.g. an xterm
window or DOS console) with the following command at the system prompt:

<path>oval

where <path> is the path to your executable oval file. Instead of explicitly
providing the <path>, you may wish to create a link (shortcut) to the oval

binary, place it in a directory in your system’s search $PATH, or modify your
system’s search $PATH to include the directory that contains oval.

You will then be queried for the names of two files,

Name of the RunFile:

and

Name of the StartFile:

We will henceforth refer to these two files with the generic names “RunFile”
and “StartFile”, which are described in Sections 8 and 9. The output will
normally be written to a set of files, whose names will contain the core
RunFile name. The various output files are listed in Table 2 and will be
described later in the documentation. As a simple example, the output file
A<RunFile>.txt is a text file that can be imported into a spreadsheet, such
as Excel or Gnumeric to view the average stresses and deformations of the
assembly (note, imported, not opened).

Before describing the detailed contents of the RunFile and the StartFile,
you should know that the RunFile is an ASCII (text) file that describes
how the simulation is to be run: boundary deformation rates, boundary
stress rates, friction coefficients, spring constants, etc. (see Section 8). A
StartFile gives the number of particles, particle type, and the initial particle
arrangement (sizes, positions, etc., see Section 9). A StartFile may be of
either ASCII or binary type (Table 2).

18

File name Type Function Sections

A<RunFile>.txt text macro-results for spreadsheets 10.1
B<RunFile> text macro-results for text editors 10.2
C<RunFile> binary restart StartFile 8.1.7
C?<RunFile> binary restart StartFile 8.2.7
D<RunFile> text StartFile 9
E<RunFile> binary StartFile 8.1.7
F[1-4]?<RunFile> text micro-results for post-analyses 10.5
G?<RunFile> binary graphics input for OvalPlot 8.2.13

? – a letter that corresponds to the deformation-stress path in which
the file was created (Section 8.2.7 and Section 17)

Table 2: Oval output files

7 Boundary Types

Oval is primarily intended for element studies of using rectangular (2D)
and box (3D) assemblies of particles. During a simulation, the boundaries
(sides) are moved to produce prescribed rates of strain or rates of stress, as
described in Section 8.2. The boundaries themselves can be of several types.

7.1 Periodic boundaries

The default boundaries are periodic. These boundaries can be used with
either dense or sparse assemblies. Moreover, some of the other types of
boundaries are created by starting with an assembly having periodic bound-
aries and then replacing the periodic boundaries with the another boundary
type.

7.2 Tight-fitting particle boundaries

This type of boundary can only be created with 2D assemblies, and it is cre-
ated by beginning with a non-sparse (at least, moderately dense) assembly
having periodic boundaries. The process of creating a tight-fitting particle
boundary involves finding the particle graph of the assembly (i.e., finding
the topological arrangement of the contacts) and then identifying the string
of contacting particles that surround the assembly. These particles become
the boundary particles, which will fit tightly against (i.e., will be in con-
tact with) the interior particles. After the periodic boundaries are “broken”
and replaced with tight-fitting boundaries, the boundary particles will not
likely be in equilibrium, so a period of several hundred time steps should
be included to allow the assembly to equilibrate with its new boundaries.
Once periodic boundaries are replaced with tight-fitting particle boundaries,

19

the periodic boundaries can not be retrieved. Tight-fitting boundaries can
be placed on the left and right sides (with periodic boundaries remaining
top and bottom), on the the top and bottom (with periodic boundaries re-
maining left and right), or on all four sides of the assembly. The intended
combination of boundaries is specified with the iflexc input variable (Sec-
tion 8.2.8).

Several types of stress or strain control are available with tight-fitting
boundaries:

• Stress control (iflexc = x1, 1x, or 11). The stress (actually, the
stress rate) can be controlled with the icontr=1 and defrat at the
desired rate (Sections 8.2.1 and 8.2.2). For example, if tight-fitting
boundaries are created on the left and right sides, the stress σ11 is
applied against the two sides, and the rate of this stress can be con-
trolled. In this same example, the other stress components (σ12, σ21,
and σ22) are also applied on the left and right sides, but only their orig-
inal (not current) values are applied (those stresses present when the
tight-fitting boundary was created). This approach prevents “hydro-
fracturing” of the side boundaries if the assembly is being compressed
vertically. Stress-controlled tight-fitting boundaries approximate the
membrane-type conditions that are commonly used in soil testing. The
boundary stress is applied to imaginary boundary element: the branch
vectors that connect the centers of the boundary particles.

• Displacement control with free rotation (iflexc = x2, 2x, or 22).
The particles along a tight-boundary are constrained to translate at a
rate in accord with the prescribed strain rates (Sections 8.2.1 and 8.2.2).
The boundary particles are allowed to rotate. Boundary forces are ap-
plied at the centers of the boundary particles.

• Displacement control with free rotation (iflexc = x3, 3x, or 33).
The particles along a tight-boundary are constrained to translate at a
rate in accord with the prescribed strain rates (Sections 8.2.1 and 8.2.2).
The boundary particles constrained to rotate in accord with the pre-
scribed rotation rate (the Eulerian rate that corresponds to 1

2
F12 in

Section 8.2.1). Boundary forces are applied at the centers of the
boundary particles.

• Displacement control with friction and free rotation (iflexc = x4,

4x, or 44). Suppose that tight-fitting boundaries have been created
on the left and right sides, and periodic boundaries remain on the top
and bottom (iflexc = 40). With this type of control, particles along
the left and right sides are constrained to translate horizontally at a
rate in accord with the prescribed horizontal strain rates F11 and F12

20

(Sections 8.2.1 and 8.2.2). The side particles are free to translate verti-
cally, but only if they overcome the side friction coefficient prescribed
by frictw (Section 8.1.17). The boundary particles are allowed to
rotate. Boundary forces are applied at the centers of the boundary
particles.

• Displacement control with friction and free rotation (iflexc = x5,

5x, or 55). Suppose that tight-fitting boundaries have been created
on the left and right sides, and periodic boundaries remain on the top
and bottom (iflexc = 40). With this type of control, particles along
the left and right sides are constrained to translate horizontally at a
rate in accord with the prescribed horizontal strain rates F11 and F12

(Sections 8.2.1 and 8.2.2). The side particles are free to translate ver-
tically, but only if they overcome the side friction coefficient prescribed
by frictw (Section 8.1.17). The boundary particles constrained to ro-
tate in accord with the prescribed rotation rate (the Eulerian rate that
corresponds to 1

2
F12 in Section 8.2.1). Boundary forces are applied at

the centers of the boundary particles.

7.3 Rigid-flat boundaries

This type of boundary can be created with either 2D or 3D assemblies. The
boundary is produced by giving an input value for iflexc of 9, 90, or 99

in the first line of the deformation-stress path section of a RunFile (see Sec-
tion 8.2.8). A pair of rigid-flat boundaries (one each on opposite sides of the
assembly) can coexist with periodic boundaries on the other sides. The size
of the assembly (the box dimensions) are input with the dimensions xcell
(Sections 9.1.2 and 9.1.3). Unlike with tight-fitting boundaries (Section 7.2),
particles interact with rigid-flat boundaries at the particle surfaces, instead
of at the particle centers. Stresses and strains can be controlled with rigid-
flat boundaries, just as with other types of boundaries (Sections 8.2.1–8.2.5).

7.4 External-particle boundaries

These boundaries are created by surrounding the assembly with a set of ex-
ternal particles, which confine the interior particles. This type of boundary
can be created with either 2D or 3D assemblies. The boundary is pro-
duced by giving an input value of greater than one to the integer nplatn

(Section 8.1.12). For example, if nplatn=4, then you will be querried to
give the names of four files that provide information about each of the four
sets of boundary particles—their positions, radii, etc.—as described below.
Stresses and strains can be controlled with rigid-flat boundaries, just as with
other types of boundaries (Sections 8.2.1–8.2.5). Note that the boundary

21

particles can only be circles (2D) or spheres (3D).
A file that provides information about a set of boundary particles con-

tains four lines that give general information about the particles followed
lines that provide information on each particle. The content of each line
is described in the following subsections (Fortran free format is used, with
integer or double precision type corresponding to the leading letter of the
variable name).

7.4.1 ipvers

Set this value to 1. It gives a version number for the file, in the event that
future changes are made to the format of these files.

7.4.2 ixfix(1),ixfix(2),ixfix(3),ithfix(1),ithfix(2),ithfix(3)

The manner in which the boundary particles are contrained in their mo-
tions. Values of either 0 or 1 (unconstrained or constrained, respectively)
are assigned to the three directions of translation, (ixfix), and the three
directions of rotation, (ithfix). Note that when translation is constrained
in a particular direction, then the boundary particle move in accord with
the prescribed deformation rate Fij (Section 8.2.1).

7.4.3 idirec

The “direction” of the boundary. For example, if a set of boundary particles
are one the left (i.e., x1) side of a 2D assembly, then idirec is set to 1. If a
set of boundary particles are one the top or bottom of a 2D assembly, then
idirec is set to 2 (i.e., x2). This feature is necessary to enable the control
of stress within these boundaries.

7.4.4 nplt

The number of particles in the boundary file.

7.4.5 rad,xp(1),xp(2),xp(3)

The radius and postion of a particle center, with one particle per line of
input.

8 RunFiles for Oval

This ASCII text file is a formatted input file, which means that the input
information must be placed within certain rows and columns (or column
ranges). Sample RunFiles can be downloaded from the web site, and an

22

example of a RunFile is shown in Fig. 1. This same file can be found at the
Oval web site (see page 12) in the directory oval/samples/results with
the file name LoadComp. I suggest that you use this file as a template for
creating your own RunFiles.

The RunFile name will be used for assigning names to the various output
files (Section 6 and Table 2). On Windows systems, you may want to give
the RunFile name a .txt extension so that it will be more properly treated
with word processors such as Word or Word Pad (see comments on page 15
and in item 9 on page 65).

A RunFile file is arranged in two parts:

1. a general information section consisting of the following 29 lines (see
Section 8.1):

• a single title line.

• a series of 13 formatted lines that provide integer input.

• a series of 15 formatted lines that provide floating point input.

2. five spacer lines of comments.

3. a deformation-stress path that consists of a series of formatted lines
that describe each phase (segment) of the path (see Section 8.2). The
program currently accepts up to 200 segments, although this limit can
be changed with the source code parameter lc1 in the source common

file.

The contents of the first part, detailed in the next section, are contained in a
series of 29 lines, each with a single input value at the beginning of the line.
The third part, which specifies the deformation-stress path, is detailed in
Section 8.2, page 31. Although the format specifier f16.7 is used, Fortran
allows the input data to be in either fixed (F) or exponential (E or D) formats
with any number of significant digits, provided that the data fits within the

first 16 columns each line.

8.1 RunFile: General information section

8.1.1 title (a80)

The title could include, perhaps, information on the nature of the simu-
lation for your future reference. At present, the variable title is not used
within the program, nor is it echoed to any of the output files.

8.1.2 algori (i16)

The program can be run with either of two DEM algorithms:

23

Prototype RunFile for the DEM program Oval

2 : algori | the algorithm for advancing the particle positions (1 or 2)

1 : ivers | whether to include additional lines in this RunFile

0 : ncownt | fequency for updating non-periodic boundaries (0)

0 : iout(2) | output files with avg. def. and gradients in layers (0 or 1)

0 : iout(3) | output files with avg. stresses within layers (0 or 1)

1 : istart | type of file defining the initial configuration (1, 2, or 3)

0 : iend | type of file to be created at end of the run (0, 1, 2, or 3)

0 : idef | reference configuration for reporting deformations (0)

200 : iupdtm | max. no. of time steps between linked-list updates

0 : icirct | compute and regularly update the particle graph (0 or 1)

0 : imodel | model for contact force

0 : nplatn | number of additional files with boundary particles

8 : nloop1 | minimum number of iteration loops when algori=2

1.00 : kn | normal contact stiffness (force/indentation)

1.00 : kratio | ratio of tangential/normal contact stiffnesses

0.50 : frict | coefficient of friction at particle contacts

0.50 : frictw | coefficient of friction between particles and wall

0. : rho | the mass density of the particle material

0.400 : sep | threshold separation during the near-neighbor searches

0.05 : pcrit(1) | viscosity coefficient for translational body damping

0.05 : pcrit(2) | viscosity coefficient for rotational body damping

0. : pcrit(3) | viscosity coefficient for contact damping

0.64 : xseed | seed for assigning random initial velocities (when motion=1)

0. : rmsvel | rms initial velocity (when motion=1)

0. : rfree1 | unused input value (0) A placeholder for added features

0. : rfree2 | unused input value (0) A placeholder for added features

0. : rfree3 | unused input value (0) A placeholder for added features

0. : dt | time increment

imicro

************ Deformation-Stress Path Segments ********** krotat iflexc | iplot

(100000) (10000) (1000) (100) (10) (1) | idump | |ibodyf ipts2 |

icontr| rate_11 | rate_22 | rate_33 | rate_12 | rate_13 | rate_23 igoal finalv ipts | | | | defdot | |

------|---------|---------|---------|---------|---------|---------|--|-|---------|----|-|--|-|--|------|----|--|

000000 0. 0. 0. 0. 0. 0. 70 0 10. 2 0 0 0 0 0. 0 0

100000 0. -5.0e-7 0. 0. 0. 0. 70 0 10000. 50 0 0 0 0 0. 0 0

Figure 1: An example RunFile named LoadComp for a biaxial compression test with compression in the x2 direction.

24

algori=1 The conventional DEM algorithm (refer to Cundall and Strack
1979). The algorithm uses an implicit integration scheme.

algori=2 A new algorithm that the author has developed to self-monitor
the progress of an intended pseudo-static simulation. With the
standard algorithm (algori=1), the otherwise natural imbal-
ance of forces on the particles can become excessive, particu-
larly if the loading rate is too rapid. With the new algorithm
(algori=2), several time steps are cycled within each defor-
mation step. The cycling continues until the average force
imbalance on a particle is within a threshold limit which con-
stitutes a near-equilibrium criteria. At present the threshold is
a particle force imbalance less than 1% of the average contact
force magnitude (variable chiavg.lt.chimax). The number
of cycles is currently programmed to be no less than 3 and
no more than 101. See Sections 10.3.5, 10.3.9, and 10.3.15
for more information on the threshold limits that define the
near-equilibrium criteria.

I recommend using algori=1 with sparse assemblies (for ex-
ample, if you are consolidating a gaseous assembly into a dense
one) or when you are trying to capture the true dynamics of
a deformation process (vibration studies, flow studies, etc.);
but I recommend using algori=2 for pseudo-static simulations
with dense assemblies.

8.1.3 ivers (i16)

In early versions of the code, a RunFile consisted of 29 lines of general in-
formation. I later found the need for additional input information. Because
Fortran is a rather inflexible language, the input value ivers was added,
so the 29 lines could be extended, while perserving backward-compatability
with older RunFiles. For most simulations ivers can be set to 1.

ivers=1 The original 29 lines of general information will be included in
the RunFile.

ivers=3 An additional 5 lines of integer information are included in the
RunFile.

ivers=4 An additional 5 lines of integer information are included in
the RunFile, and an additional 8 lines of real information is
included in the RunFile.

25

8.1.4 ncownt (i16)

When a flexible, tight-fitting boundary is used (Sections 7.2 and 8.2.8),
it must be periodically updated, as the topology of the assembly is con-
stantly changing. ncownt gives the frequency of updating the boundary.
For example, if ncownt=1, the boundary is updated after every time step; if
ncownt=10, the boundary is updated after every tenth step. When a flex-
ible boundary is not being used, the input value of ncownt is ignored. If
ncownt=0 a flexible boundary is not being used, the boundary will never be
updated.

8.1.5 iout(2) (i16)

Currently not supported.

8.1.6 iout(3) (i16)

Currently not supported.

8.1.7 istart (i16)

The type of StartFile that will be used. The program supports three formats
of StartFiles, which give the number of particles, particle type, and the initial
particle arrangement (sizes, positions, etc.).

istart=1 The initial particle arrangement will be given in a D<RunFile>
file, henceforth referred to as a “D-file” (Section 9). This file
is a text (ASCII) file (very portable).

istart=2 The initial particle arrangement will be given in a E<RunFile>
file, or “E-file”. This file contains the same information as a
D-file, but in a binary format (not portable, but smaller and
faster). Also see Sections 8.1.8.

istart=3 The entire initial state will be given in a C<RunFile> file, or “C-
file”. This binary “restart” file allows the current simulation
to begin at the exact condition that was “dumped” at the end
of a previous simulation. The restart file includes all positions,
velocities, and contact information that allow the new run to
begin where a previous run had left off. Note that with D-
and E-files, the simulation will begin with the particles hav-
ing zero velocities (or perhaps randomly assigned velocities,
Section 8.1.24), and there will be no history of the contact
forces. With restart C-files, the simulation will begin with ve-
locities and forces carried over from a previous run. Also see
Sections 8.1.8 and 8.2.7.

26

8.1.8 iend (i16)

The type of StartFile that will be created at the end of the simulation. The
file that is created can later be used to define the initial condition for a
future simulation (see Sections 6 and 8.1.7).

iend=0 No file will be created at the end of the simulation.

iend=1 An ASCII D<RunFile> file will be created, containing the final
particle arrangement. See Section 9.

iend=2 A binary E<RunFile> file will be created, containing the final
particle arrangement. This file will contain the same informa-
tion as a D-file but in a binary format.

iend=3 A binary C<RunFile> file will be created, containing the entire
end state of the simulation. This “dump” file can be used
as a “restart” file to begin a future simulation at the exact
ending state of the current simulation. Also see Sections 8.1.7
and 8.2.7.

8.1.9 iupdtm (i16)

The frequency of updates to the linked list of near-neighbor particle pairs.
You don’t have to be too concerned about its value, as the program au-
tomatically determines if a more frequent update is required. A value of
between 10 and 500 should be fine, but larger values will lead to somewhat
faster computations. See Section 8.1.19.

8.1.10 icirct (i16)

Currently not supported.

8.1.11 imodel (i16)

The contact model.

imodel=0 A linear contact model with friction (see Sections 8.1.14, 8.1.15,
and 8.1.16).

imodel=5 A Hertz-Mindlin contact model with friction. (see Sections
8.1.14, 8.1.15, and 8.1.16).

27

8.1.12 nplatn (i16)

For boundaries of the external-particle type (Section 7.4), nplatn gives the
number of files that must be read to provide information about the external
particles, with one file per boundary. If you are not using this type of
boundary, set nplatn=0.

8.1.13 nloop1 (i16)

The minimum number of iteration time steps per deformation step. This
value is only used when algori=2. If nloop1 is zero and algori=2, a value
of 3 is assigned to nloop1.

8.1.14 kn or G f16.7

With linear contacts (imodel=1), this input variable is The linear (spring)
contact stiffness for determining the contact forces normal to contact sur-
faces. This stiffness is multiplied by the indentation at particle contacts
(i.e., half the overlap between two particles) to compute the normal contact
force. As a result, the contact stiffness relative to the particle separation
is kn/2, so that the Oval stiffness value may be half of that used in other
DEM codes.

With Hertz-Mindlin contacts (imodel=5), this input variable is the shear
modulus G of the particle material.

Although the format specifier f16.7 is used, Fortran allows the input
data to be in either fixed (F) or exponential (E or D) formats with any
number of significant digits, provided that the data fits within the field
width of 12 characters.

8.1.15 kratio (f16.7)

With linear contacts (imodel=1), this input variable is the ratio of two
contact stiffnesses: the tangential stiffness divided by the normal stiffness.

With Hertz-Mindlin contacts (imodel=5), this input variable is the Pois-
son ratio of the particle material.

8.1.16 frict (f16.7)

The friction coefficient between particles.

frict=0. The contacts will be frictionless—friction will be “turned off.”
I sometimes use this mechanism to help densify a loose assem-
bly.

frict>0. The contacts will be frictional with the given coefficient of
friction.

28

8.1.17 frictw (f16.7)

The friction coefficient between particles and boundary walls (or boundary
particles). See Section 7.

8.1.18 rho (f16.7)

The mass density of the particle material. See Section 8.1.25 for options to
automatically assign a value of rho.

8.1.19 search (f16.7)

The threshold distance between two particles that will place them into a
linked list of near-neighbors. To reduce the computation time, the subrou-
tine that assembles the near-neighbor linked list is only occasionally called.
The actual contact detection process, which is repeated with each time step,
is only applied to this candidate linked list of near neighbors (Section 8.1.9).
The threshold distance is equal to the dimensionless search value multiplied
by the minimum particle radius. Larger values of search slow the contact
detection process within every time step, since it will increase the length of
the list of potential candidates, most of which will not actually be in contact.
Larger values of search, however, will mean less frequent construction of
the linked list of near-neighbors, a relatively slow process. Values of search
between 0.20 and 0.80 seem to be appropriate.

8.1.20 pcrit(1) (f16.7)

A dimensionless coefficient of viscosity, which will be applied to the trans-
lational velocities of the particles. This coefficient represents a fraction of
the critical damping 2

√
mk, and the resulting viscous force is applied as a

body force. When periodic boundaries are being used, this viscous damping
is only applied to the particle velocities that are measured relative to the
mean-field velocity. You will probably want to experiment with different
values, with due attention to such performance parameters as chi1, chi2,
chi3, chi4, and psi (pages 47–48).

8.1.21 pcrit(2) (f16.7)

A dimensionless coefficient of viscosity, applied to the rotational velocities
of the particles (see the previous Section 8.1.20).

8.1.22 pcrit(3) (f16.7)

A dimensionless coefficient of viscosity, applied to the contact velocities of
any pair of particles that are touching. This viscous force is applied as

29

a contact force. The contact viscosity is “turned off” whenever frictional
sliding occurs.

8.1.23 xseed (f16.7)

A seed for the random number generator. It is used for assigning initial
random velocities to the particles. The seed is only used when rmsvel>0.
See Section 8.1.24.

8.1.24 rmsvel (f16.7)

The average (root mean square) random particle velocity, assigned at the
beginning of the simulation. Non-zero velocities can only be assigned when
algori=1 (Section 8.1.2). When a rmsvel is assigned, the particles are
also given an initial angular velocity, on average about 10% of rmsvel di-
vided by the mean particle radius (rather arbitrary, but this choice resides
in “subroutine init” as rotfac = 0.10d0. Although velocities are ran-
domly assigned, care is taken to assure that the initial momentum and an-
gular momentum of the entire assembly is zero.

rmsvel=0. Do not assign initial random velocities to the particles. If
istart=1 or istart=2, the simulation will begin with the par-
ticles in an initially stationary state. When istart=3, the
particle velocities will be carried over from a previous run re-
gardless of the value of rmsvel.

rmsvel>0. A random velocity will be assigned to each particle, with the
average (root mean square) random particle velocity equal to
rmsvel. I sometimes use this feature to help densify an as-
sembly by applying an artificial “vibration” technique. This
option has no effect when the simulation is begun with a bi-
nary restart file (istart=3), since the velocities are carried
over from a previous run. This option is only available when
algori=1 (Section 8.1.2).

8.1.25 dt (f16.7)

The time step. The program will provide feedback on whether your time
step is too large and will recommend a maximum time step, so you can just
guess a trial time step and then adjust it later.

Several other options are available for establishing a time step, depending
on the combined values of dt and rho (Section 8.1.18):

dt>0, rho>0 If appropriate, your assigned values are used. Oval will pro-
vide feedback on your assigned time step and the maximum

30

recommended time step. (See the example output in Sec-
tion 11.) If your time step exceeds this maximum, then Oval

will stop.

dt=0, rho>0 The time step will be automatically set to a recommended time
step. Your input density rho will be used.

dt>0, rho=0 Your input time step will be used. An efficient density will be
set to accommodate the input time step.

dt=0, rho=0 The time step will be set to 1, and an efficient density will be
set to accommodate this time step.

8.2 RunFile: Deformation-stress path section

The final section of a RunFile describes the manner in which either stresses or
deformations are to be advanced. This section of the RunFile begins with five
comment lines that are ignored by the program. These five lines are followed
by a series of input lines, with each line specifying its segment of the desired
deformation-stress path. The lines are arranged sequentially, with each line
specifying a single segment of the deformation-stress path. Besides giving
deformation-stress path information, these lines also determine the duration
of each segment and specify supplementary actions to be taken at either the
beginning or end of the segment. Each line contains 18 fields, arranged and
formatted as follows:

format(i6, icontr

6(1x,f9.6), 1x, defrat

i2, 1x, igoal

i1, 1x, krotat

f9.6, 1x, finalv

i4, 1x, ipts

i1, 1x, idump

i2, 1x, iflexc

i1, 1x, imicro

i2, 1x, ibodyf

f6.5, 1x, defdot

i4, 1x, ipts2

i2) jout

Note that the input fields are separated with the blank character (1x) and
are arranged horizontally on a single line. Each line defines a single segment

of the deformation-stress path. The content of each input field is detailed
in the remainder of this section. I suggest that you use the sample RunFile
“LoadComp” as a template for creating your own RunFiles.

31

8.2.1 icontr (i6, 1x)

The deformed shape of the assembly is described by the deformation gradient
tensor F, which we place alongside the corresponding components of the
symmetric Cauchy stress tensor σ (I’m not suggesting that the two tensors
are conjugate):

F =





F11 F12 F13

0 F22 F23

0 0 F33



 σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 icontr→





1 4 5
2 6

3





(1)
where compressive stresses are negative. You must control either the stress
rate or the deformation rate for each of the six independent components
(labeled 1 to 6 in the third matrix). For example, you could control the
following combination of stress and deformation rates: σ̇11, σ̇22, Ḟ33, Ḟ12,
σ̇13, and Ḟ23. You must control either the stress rate or the deformation
rate with each component; but you may not control both the stress and
deformation rates of the same component, such as both σ̇13 and Ḟ13.

The input variable icontr specifies whether the deformation rate or the
stress rate will be controlled for each of the six components. A 0 specifies
deformation control; a 1 specifies stress control. For example, an icontr

value of 110010 would control the rates σ̇11, σ̇22, Ḟ33, Ḟ12, σ̇13, and Ḟ23,
where the six digits of icontr are arranged in the order of components 11,
22, 33, 12, 13, and 23 (see the third matrix above).

8.2.2 defrat (6(f9.6, 1x))

These are the six rates of either deformation or stress, as specified by icontr

(Section 8.2.1). A deformation rate corresponds to a component of the rate
of change of the deformation gradient, Ḟ. The stress rates are the rates of
change of components of the Cauchy stress tensor. Note that compressive
stress is negative. At present, there is no provision for rotational springs
at the particle contacts, so that the computed stress tensor components
are very nearly symmetric (σij ≈ σji, within the numerical precision of the
computations), and, of course, there will be no couple stresses.

8.2.3 igoal (i2, 1x)

The input variables igoal and finalv determine the duration of the deforma-
tion-stress segment (see also Section 8.2.5). The duration is determined by
monitoring just one of the six components of either stress or deformation
(11, 22, 33, 12, 13, and 23) and whether that component has stepped across
a given threshold value. The threshold value is specified with the input vari-
able finalv (Section 8.2.5). The variable igoal is a 2-digit integer. The

32

first digit is from 1 to 7. Except when it is 7, the first digit specifies which
component will be monitored. The second digit is either 0 or 1. When the
digit is 0, the deformation threshold is monitored; when the digit is 1, the
stress threshold is monitored. The exception to this scheme is when the first
digit is 7, which specifies that the control segment will run for a fixed period
of time. Several examples follow.

igoal=51 The stress component (digit 1) σ13 will be monitored (the fifth
component, 13, of stress). The particular deformation-stress
control segment will finish when σ13 crosses the input threshold
finalv from either above or below. For example, if the shear
stress σ13 is 103.77 at the beginning of the control segment
and finalv is 50.0, then the control segment will be finished
when σ13 is reduced to 50.0 or less.

igoal=20 The deformation component (digit 0) F22 will be monitored
(the second component, 22, of deformation). If the deforma-
tion F22 is 0.745 at the beginning of the control segment and
finalv is 0.800, then the control segment will be finished when
F22 has increased to 0.800 or greater.

igoal=70 The control segment will proceed for a given duration of time,
as specified with finalv. The same result is achieved regard-
less of the second digit (74, 78, etc.). I almost always use
this scheme to specify the duration of a control segment. For
example, if igoal=70, finalv=2.500, and dt=0.25, then the
control segment will be exited after 10 time steps (10×0.250 =
2.500).

When assigning values to finalv, the stresses σ11, σ22, and σ33 are usually
negative (compressive).

It is can sometimes be difficult to foresee the direction in which a partic-
ular stress (or deformation) component will be moving, and so the specified
component may actually move further away from the anticipated target
finalv. For this reason, I usually just use a value of 70 for igoal.

8.2.4 krotat (i1, 1x)

You can select the dynamic behavior of the simulation by suppressing the
particle movements or rotations.

krotat=0 Neither rotations nor movements will be restricted (the usual
situation).

33

krotat=1 Particle rotations will be prevented, as in the simulation ex-
periments of Bardet (1994). Only the mean-field rotations will
be applied to the particles, as specified by the defrat rates Ḟij

(Sections 8.2.1 and 8.2.2).

krotat=2 Particle translation will be prevented. Only the mean-field
translations will be applied to the particles, as specified by the
defrat rates Ḟij (Sections 8.2.1 and 8.2.2).

krotat=3 Both the particle rotations and the particle translations will
be prevented. Only mean-field rotations and translations will
be applied to the particles.

The actions of krotat apply only to the particular deformation-stress seg-
ment.

If krotat is not set to zero, you should avoid using algori=2, as this
option can lead to very slow and inefficient simulations (Section 8.1.2). The
reason is that algori=2 runs numerous relaxation cycles between each de-
formation increment, running relaxation cycles until the particles are in
near-equilibrium. When movements are artificially restricted, the system
will always be far from equilibrium.

8.2.5 finalv (f9.6, 1x)

See the discussion of igoal, Section 8.2.3.

8.2.6 ipts (i4, 1x)

The program Oval can create lots of output. Simulations may require many
thousands of time steps. The input variable ipts allows you to choose the
frequency at which results are appended to the output files. For example,
when ipts is 50 then results will be output to the A- and B-files every 50th
time step (Sections 10.1–10.4).

8.2.7 idump (i1, 1x)

As has already been mentioned in regard to the input variable iend, the
program allows you to “dump” a binary “restart” file at the end of a control
segment (Sections 8.1.7 and 8.1.8). This binary file can later be used to start
a new simulation from the exact conditions that were present at the time
the restart file was created. You can use the field idump to dump a restart
file in the middle of a simulation. Also see Sections 8.1.7 and 8.1.8.

idump=0 Do not dump a binary restart file at the end of this control
segment.

34

idump=1 Dump a binary restart file at the end of this control segment.

The name of the output file will have following form:

C?-<RunFile>

where the “?” is a three digit number (e.g., 007) that corresponds to the
particular segment of the deformation-stress path at which the file was cre-
ated.

8.2.8 iflexc (i2, 1x)

Oval uses iflexc as a flag for creating tight-fitting boundaries and rigid-
flat boundaries (Sections 7.2 and 7.3). The alternative external-particle
boundaries are created with the use of nplatn. The input value iflexc is a
two-digit integer: the first digit specifies the condition for the left and right
boundaries; the second digit specifies the condition for the top and bottom
boundaries. An iflexc=10 would create a stress boundary on top and bot-
tom, but leave periodic boundaries on the left and right. An iflexc=0would
leave all boundaries as periodic. The following boundary types, iflexc=xx,
are available. These options are described in more detail in Sections 7.2
and 7.3.

iflexc=0 Periodic boundaries (2D or 3D).

iflexc=1 Stress control (2D only).

iflexc=2 Displacement control tight-fitting boundary with free rotation
of boundary particles (2D only).

iflexc=3 Displacement control tight-fitting boundary with constrained
rotation of boundary particles (2D only).

iflexc=4 Displacement control tight-fitting boundary with free rotation
of boundary particles and a frictional limit on the constrained
translation of boundary particles (2D only).

iflexc=5 Displacement control tight-fitting boundary with constrained
rotation of boundary particles and a frictional limit on the
constrained translation of boundary particles (2D only).

iflexc=9 Rigid-flat boundaries for 2D or 3D assemblies (Section 7.3).
For 3D assemblies, an iflexc=99 will create rigid-flat bound-
aries on all six faces; an iflexc=9 will creat rigid-flat bound-
aries on the two x1 faces; and an iflexc=90will creat rigid-flat
boundaries on the two x2 faces.

35

Tight-fitting boundaries are created from an initial assembly having periodic
boundaries. The initial assembly should be dense enough to have a complete
load-bearing particle graph with well defined peripheral particles. To create
tight-fitting boundaries, the first deformation-stress segment (line) in the
RunFile should allow the initial assembly to equilibrate within its periodic
boundaries (with, perhaps, a few hundred time steps). This first line would
have iflexc=0 The second deformation-stress segment (line) would specify
the type of tight-fitting boundaries that should be created (iflexc=xx).
The boundaries are created at the start of this deformation-stress segment.
This second segment should have icontr=000000 and a duration of several
hundred time steps (igoal=70 and finalv>100), so that the assembly can
come to equilibrium within its new boundaries. Subsequent deformation-
stress segments can be used to load the assembly.

8.2.9 imicro (i1, 1x)

Oval can create a set of data files for use in post-processing the micro-level
behavior of the assembly. These data files are described in Section 10.5.
They can be used as input to your own Matlab, c, Fortran, Octave, Scilab,
or R data analysis programs.

8.2.10 ibodyf (i2, 1x)

Currently not supported.

8.2.11 defdot (f6.5, 1x)

Currently not supported.

8.2.12 ipts2 (i4, 1x)

Currently not supported.

8.2.13 iplot (i2, 1x)

Oval creates the binary G-files that become the input to the post-processor
OvalPlot for producing micro-level graphical depictions. The program
OvalPlot is described in the second part of this document. In particular,
Section 17 describes the manner in which G-files should be created.

9 StartFile: The initial particle arrangement

The StartFile provides the initial particle arrangement, including the par-
ticle sizes, shapes, orientations, and positions. There are three types of

36

StartFiles, with the type indicated by the leading character of the StartFile
name: C, D, or E. Since only the DStartFile is readable as a text (ASCII)
file, its contents will be described in this section. EStartFiles are just binary
forms of DStartFiles. The nature and purpose of CStartFiles has already been
described in Sections 6, 8.1.7, and 8.1.8.

Sample D-files can be found in the main oval directory in

oval/samples/startfiles

and descriptions of these assemblies are given in Section 12.
A D-file begins with either three or four lines that give general informa-

tion about the assembly:

1. the type of particle (at present, the program does not allow the mixing
of particle types within the same assembly). See Section 9.1.1.

2. the number of particles and the overall dimensions of the assembly
(i.e. the distances between the periodic boundaries). See Section 9.1.2
and Fig. 3.

3. the shear offset distances (Section 9.1.3 and Fig. 3).

4. an angle β that describes the manner in which circular arcs are spliced
together to create oval and ovoid particles (Fig. 4). This angle must
be given in degrees. This line of input is only required for the oval and

ovoid particle types. Section 9.1.4 discusses limitations on the input
value of β.

These three (or four) lines are followed by information on each particle, with
one line per particle. For example, the D-file for an assembly of 1002 circular
particles might begin with

1

1002 2.98994563276730430E+01 2.98446889993219070E+01 1.00000000000000000E+00

0.00000000000000000E+00 0.00000000000000000E+00 0.00000000000000000E+00

3.13454063710418570E-01 1.79352868741551070E+01 1.79266777574543750E+01

4.43756654693070110E-01 1.27698119609280810E+01 2.52760548238972190E+01

etc.

The detailed contents of the first three or four lines are described in
the following section. The remaining lines in the StartFile are described in
Section 9.2.

9.1 Assembly data in D-StartFiles

9.1.1 kshape (i1)

The first column of the first input line should contain an integer of 1, 2, 3,
4, or 5, which will designate the type of particle.

37

(a) Oblate (b) Prolate

Figure 2: Ovoid particles.

kshape=1 circular (2D) disks

kshape=2 oval (2D) disks. The ovals are composed of four circular arcs
spliced together (Fig. 4). Although a more general variety of
shapes can be formed from four (or more) arcs, the program
currently supports only bi-symmetric ovals.

kshape=3 elliptical (2D) disks. The code for this has not been recently
tested and might not be stable.

kshape=4 spheres (3D)

kshape=5 ovoids (3D), a non-spherical shape that is composed of two
spherical caps and a torus center (Fig. 2). The particle is
smooth and strictly convex.

9.1.2 np,xcell(1,1),xcell(2,2),xcell(3,3) (i6,3(1pd25.17))

The number of particles, np, should appear within the first six columns,
and the three dimensions of the assembly should be presented in double
precision format, with 25 columns per dimension (Fig. 3). These dimensions
are simply the spacings between opposing periodic boundaries. The value of
xcell(3,3) must be given, even with 3D assemblies (any value will work,
since it will be ignored in the simulation).

38

xcell(1,2)

xcell(1,1)

xcell(2,2)

Figure 3: The xcell(i,j) dimensions for a 2D assembly

9.1.3 xcell(1,2),xcell(1,3),xcell(2,3) (6x,3(1pd25.17))

After six (blank) columns, the three shear offsets should be given in double
precision format, with 25 columns per offset (see the offset xcell(1,2) in
Fig. 3).

9.1.4 beta (1pd25.17) — oval and ovoid particles only!

When 2D ovals or 3D ovoids are being used, this fourth line contains the
splice angle, beta, in degrees (Fig. 4). The angle β must be greater than
zero and no greater than 90◦. The particle aspect ratio will be limited by
your choice of β (Sections 9.2.2 and 9.2.5). The height/width ratio must lie
within the following bounds:

1 − cos β

sinβ
< α <

cos β

1 − sinβ
. (2)

9.2 Particle data in D-StartFiles

Following the general information at the head of a DStartFile, information is
given on each particle, with one line per particle. The arrangement of this
data depends upon the type of particle.

9.2.1 Circle particle data

Three fields give the radius, the x1–location, and the x2–location of the par-
ticle. The location coordinates refer to the center of the particle. Following
the general information at the head of a DStartFile, this information is given
on each circle, with each circle beginning on a new line. The data items are
listed below. Each data field is in 1pd25.17 format, with spaces or a new
line between the fields. In Oval versions 0.6.0 and higher, the data can be

39

β

Width/2

Height/2

a

Figure 4: Geometry of an oval composed of four circular arcs.

provided in free format, so that data fields do not have to be aligned within
certain columns. The example input on page 37 shows two lines of data for
circular particles.

• Radius of the circle.

• x1–location of the circle’s center.

• x2–location of the circle’s center.

9.2.2 Oval particle data

Five fields give the oval width, the ratio of height divided by the width,
the x1–location, the x2–location, and the orientation angle (in degrees) of
particle, measured counterclockwise from the x1-direction (Fig. 5). The
location coordinates refer to the center of the particle. Following the general
information at the head of a DStartFile, this information is given on each oval,
with each oval beginning on a new line. The data items are listed below.
Each data item is given in 1pd25.17 format, with spaces or a new line
between the fields. In Oval0.6.0, the data can be provided in free format,
so that data fields do not have to be aligned within certain columns.

• Half-width of the oval. Note that the oval width may be greater or
less than the height (with ellipses, the width must be greater than its

40

θ

widt
h

hei
gh

t

hei
ght

widt
h

Figure 5: Orientation angle θ for elongated particles (2D ovals and ellipses).

height). The width is measured as shown in (Fig. 5), at an angle of
θ counterclockwise from the horizontal x1 axis. As input, you should
give one half of the full particle width.

• Ratio of the height divided by the width of the particle (Fig. 5). For
ovals, the ratio may be greater or less than one.

• x1–location of the oval’s center.

• x2–location of the oval’s center.

• Orientation angle θ of the oval’s width (in degrees, Fig. 5).

9.2.3 Ellipse particle data

The code for this has not been recently tested and might not be stable.
Five fields give the major radius, the ratio of the minor radius divided by
the major radius (a number greater than zero, but no greater than one),
the x1-location, the x2-location, and the orientation angle (in degrees) of
the major axis, measured counterclockwise from the x1-direction (Fig. 5).
The location coordinates refer to the center of the ellipse. Following the
general information at the head of a DStartFile, this information is given on
each ellipse, with each ellipse beginning on a new line. The data items are
listed below. Each data item is given in 1pd25.17 format, with spaces or
a new line between the fields. In Oval0.6.0, the data can be provided in
free format, so that data fields do not have to be aligned within certain
columns. At present, the ellipse width must be greater than its height, with
a height-to-width ratio less than one.

41

• Major radius of the ellipse.

• Ratio of the minor radius divided by the major radius of the particle
(Fig. 5). For ellipses, the ratio must be greater than zero, but no
greater than one.

• x1–location of the ellipse’s center.

• x2–location of the ellipse’s center.

• Orientation angle θ of the ellipse’s width (in degrees, Fig. 5).

9.2.4 Sphere particle data

Four fields give the radius, the x1–location, the x2–location, and the x3–
location of the particle. The location coordinates refer to the center of the
particle. Following the general information at the head of a DStartFile, this
information is given on each sphere, with each sphere beginning on a new
line. The data items are listed below. Each data item is given in 1pd25.17

format, with spaces or a new line between the fields. In Oval0.6.0, the data
can be provided in free format, so that data fields do not have to be aligned
within certain columns.

• Radius of the sphere.

• x1–location of the sphere’s center.

• x2–location of the sphere’s center.

• x3–location of the sphere’s center.

9.2.5 Ovoid particle data

Seven fields give the ovoid’s revolved radius, the ratio of the axial radius
divided by the revolved radius, the location coordinates, and the orientation
angles γ1 and γ2 of the ovoid’s axis of revolution, a. An ovoid is formed by
rotating an oval (i.e. Fig. 4) about its central axis a. The location coordi-
nates refer to the center of the particle. Following the general information
at the head of a DStartFile, this information is given on each ovoid, with
each ovoid beginning on a new line. The data items are listed below. Each
data item is given in 1pd25.17 format, with spaces or a new line between
the fields. In Oval0.6.0, the data can be provided in free format, so that
data fields do not have to be aligned within certain columns.

• Half of the transverse (revolved, half) width of the ovoid. This half-
width is measured perpendicular to the central axis of revolution, a.

42

x3

x2

x1

γ2

γ1
a

Figure 6: Orientation angles γ1 and γ2 for 3D ovoid particles. Vector a is
the central axis of revolution of the ovoid (Figs. 4 and 5).

• Ratio of the axial height divided by the transverse width. The ratio
can be greater or less than one, but it must be greater than zero.
Ratios less than one are oblate; ratios greater than one are prolate
(Fig. 2). Note that large aspect ratios (or small inverse ratios) require
much more computation time. I would not recommend using a ratio
greater than 2 or less than 0.5.

• x1–location of the ovoid’s center.

• x2–location of the ovoid’s center.

• x3–location of the ovoid’s center.

• γ1 orientation angle (in radians) of the ovoid’s axis of revolution, a
(Fig. 6). This angle should be no less than zero and no greater than
90◦.

• γ2 orientation angle (in radians) of the ovoid’s axis of revolution a
(Fig. 6).

10 Text output files from Oval

While Oval is running, output is periodically written to two files: an A-
file and a B-file. The frequency at which this occurs is specified with the
input variable ipts (Section 8.2.6). These two files contain macro-data,
such as stress and deformation. A-files and B-files are described in Sec-
tions 10.1–10.4. You can also produce F-files, which will contain micro-level
data. Because F-files can be quite large, each creation of these files must be
triggered by the input value imicro in the RunFile (Section 8.2.9). F-files
are described in Sections 10.5–10.7.

43

10.1 A-files: macro-data for spreadsheets

A simulation will create a file named A<RunFile>.txt, which will be referred
to as simply an “A-file”. The fields in this text file are separated by Tab
characters, so that A-files can be imported into a spreadsheet (note: im-

ported not opened). When importing, you will want to specify the columns
as being ”tab separated.” The spreadsheet is headed with some general in-
formation about the simulation, followed by a history of time, strains, and
stresses. The strains are reported with the simple measure

Fij − δij (3)

where Fij are components of the deformation gradient tensor. Note that the
shear deformations are reported as shear angles, like F12, or twice the shear
strain (a γ-strain, not an ε-strain). Stresses and strains are reported at the
interval ipts, which may differ for each segment of the deformation-stress
path (Sections 8.2 and 8.2.6).

For 2D assemblies, the A-file includes information on the assembly’s
particle graph (Satake 1992; Satake 1993; Kuhn 1999). This information
includes the numbers of vertices (particles that are included in the particle
graph), edges (contacts between particles), and face (void cells).

For both 2D and 3D assemblies, the A-file includes information on the
fabric tensor for the assembly (Satake 1982). We will refer to the fabric
tensor with the symbol A, which is defined with a sum over contacts within
the assembly. Note that in an A-file, this tensor A is unfortunately labeled
as “F”, with the components F(1,1), F(2,2), etc.

Aij =
1

N

N
∑

k=1

nk
i n

k
j , (4)

where nk is the (unit vector) direction of the kth branch vector (contact),
and N is the number of contacts in the assembly. When computing (4),
N includes only those contacts between particles that each have at least 2
contacts (2D assemblies) or 3 contacts (3D assemblies).

For both 2D and 3D assemblies, the A-file also includes information on
the fabric tensor As of only those (“strong”) contacts that carry a greater-
than-average force. Note that in an A-file, this tensor A is unfortunately
labeled as “Fs”, with the components Fs(1,1), Fs(2,2), etc. This tensor
is defined as a sum over the strong contacts within the assembly:

As
ij =

1

N

∑

k∈S

nk
i n

k
j , (5)

Where the set of contacts S is a set of contacts k:

S = {k : |fk| > f} (6)

44

that have a force magnitude |f k| greater than average:

f =

√

∑N
k=1 |fk|2

N
(7)

The A-file also report the proportion v of strong contacts in the assembly.
An A-file contains several more columns of data. The labels of these

columns explain their content, and many are given the same names as quan-
tities that are described below for B-files (Section 10.2).

10.2 B-files: macro-data text files

The B<RunFile> (or just “B”-files) contain more information than A-files—
not only stresses and deformations, but information that reflects the numeri-
cal performance of the simulation. For example, the B-file contains informa-
tion that can characterize whether the simulation was nearly pseudo-static
(chi1, chi2, chi3, chi4, and knrgy), the relative importance of viscous
damping during the simulation (chi3, chi4, viscbt, and viscct), and
whether the controlled stresses were maintained near their target values
(psi). This information, although useful, is packed into a text (ASCII) file
that can be somewhat difficult to read and understand. B-files are described
in the following two sections.

10.3 B-files with 2D simulations

The first line in the B-file contains the following three pieces of information
in format(i4,2x,a50,2x,a20):

• an integer that indicates the format of the B-file,

• the name of the StartFile that was used for the simulation (Sections 6
and 9), and

• the version of the Oval source code.

This line is followed by the results of each output cycle, which occur at the
frequency ipts (see Section 8.2.6). For 2D simulations, the information for
each output cycle is packed into just three lines, such as the following:

1.0320000E-04 5.948067E-05 -1.984000E-04 0.000000E+00 4.212188E-04 1623

6.49E-04 -1.551593E+04 -2.071540E+04 -2.774535E+01 9.690910E+00 3.29E-07

1.03E-03 0.00E+00 7.11E-04 6.519467E-03 5.346882E-02 2.655151E+00 3.00

The contents of these three lines correspond to the following variables
(some of these are, in fact, arrays):

45

timer defout(1,1) defout(2,2) defout(1,2) knrgy ntacts

chi1 stress(1,1) stress(2,2) stress(1,2) pnrgy psi

chi2 chi3 chi4 viscbt slidet work1t xloops

and in the following formats:

1pe14.7, 1x, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, i9,/,

2x,1pe9.2, 4x, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, 1pe9.2,/,

2x,1pe9.2, 1pe9.2, 1pe9.2, 1pe14.6, 1pe14.6, 1pe14.6, 0pf9.2

The various output values are now described.

10.3.1 timer

The accumulated time, which advances by an amount dt with each defor-
mation step (Section 8.1.25).

10.3.2 defout(i,j)

The output values, defout(i,j), are the difference between the deformation
gradient matrix Fij and the identity (Kronecker) matrix δij , as in eqn 3 on
page 44. For example, the output

defout(1,1) = 0.001

defout(2,2) = -0.002

defout(1,2) = 0.003

for a 2D assembly corresponds to the following deformation gradient:

F =

[

1.001 0.003
0 0.998

]

(8)

The deformation gradient F is referenced to the initial assembly (except
when the simulation is started with a C-StartFile, in which case, F is carried
over from a previous run).

10.3.3 knrgy

The kinetic energy of particle motions per unit of the assembly’s original vol-
ume. The kinetic energy is computed from both translational and rotational
velocities of the particles:

1

Initial volume
× 1

2

∑

Particles

(

mv̄2 + Iω̄
2
)

, (9)

where m and I are the mass and the mass moment of interia of a particle,
and v̄ and ω̄ are the average velocity and angular velocity of a particle (the
averages of the velocities at the two times t−dt/2 and t+dt/2). The energy
knrgy is not really meaningful when algori=2 (see Sections 8.1.2. Note
that Fij = 0 for i > j, as is the case in Fig. 3.

46

10.3.4 ntacts

The number of contacts. Here, a contact is shared by two particles. If you
prefer to count a contact twice (once for each of the two particles, as in
Table 5), then the number of contacts is, instead, ntacts×2.

10.3.5 chi1

One of four measures for determining whether the simulation is nearly
pseudo-static. The property chi1 is the average force imbalance on a parti-
cle divided by the average magnitude of a contact force. Small values signify
that the particles were nearly in equilibrium during the deformation process.
When algori=2, the variables chi1 and chi2 (Section 10.3.9) are used as a
near-equilibrium criteria for controlling the pace at which the deformation
is allowed to proceed (Sections 8.1.2 and 10.3.15). If there are no contacts
within the assembly, then chi1 will be zero.

10.3.6 stress(i,j)

Components of the Cauchy stress tensor.

10.3.7 pnrgy

The elastic energy stored in the contact springs per unit of the assembly’s
original volume. For the simple linear contact mechanism, this energy is
calculated as

1

Initial volume
× 1

2

∑

Contacts

[

f2
n

kn
+

f2
t

kt

]

, (10)

where fn and ft are the normal and tangential contact forces, and kn and
kt are the normal and tangential contact stiffnesses at time t.

10.3.8 psi

This performance measure characterizes the fluctuation of the controlled
stresses from their intended (target) values. When one or more digits in
icontr are 1’s, then a servo-control algorithm will attempt to control cer-
tain components of the Cauchy stress and maintain them at target values
(see Section 8.2.1). The property psi is the sum of the deviations of the
controlled stress components from their target values divided by the mean
stress (either 1/2 or 1/3 σkk). If you are not controlling any of the stress
components, then psi will be zero.

47

10.3.9 chi2

This is another measure of whether the simulation is nearly pseudo-static
(see chi1, Section 10.3.5). The value chi2 is the average moment imbalance
on a particle divided by both the average magnitude of a contact force and
the average particle radius. Small values signify that particles remained
nearly in equilibrium during a simulation.

10.3.10 chi3

A measure of whether viscous contact damping could have a significant effect
on the reported stresses and deformations. Its value is the viscous force at
an average contact divided by the average contact force.

10.3.11 chi4

A measure of whether viscous body damping could be having a significant
effect on the reported stresses and deformations. Its value is the viscous
force on an average particle divided by the average contact force.

10.3.12 viscbt

The energy expended in viscous body damping per unit of the assembly’s
original volume (cumulative since the beginning of the simulation). This
quantity may not be meaningful when algori=2 (see Sections 8.1.2). The
increment in viscbt for a time step dt is computed as follows:

1

Initial volume
×

∑

Particles

[ηvv̄ · v̄dt + ηω
ω̄ · ω̄dt] . (11)

That is, the increment of work expended in body damping is equal the
damping force (ηvv) multiplied with the particle movement (vdt). In this
equation, η is the damping coefficient. The equation includes separate con-
tributions of translational and rotational damping. The velocities v̄ and ω̄

are the averages for a particle at times t − dt/2 and t + dt/2.

10.3.13 slidet

The energy expended in frictional sliding per unit of the assembly’s original
volume (cumulative since the beginning of the simulation). The increment

in slidet for a time step dt is computed as follows:

1

Initial volume
×

∑

Sliding
contacts

[

µfn |v̄contact, t| dt
]

, (12)

48

where µ is the friction coefficient frict, f n is the normal contact force, and
v̄contact, t is the tangential contact deformation. The velocity v̄contact, t is an
average of the velocities at times t − dt/2 and t + dt/2.

10.3.14 work1t

The work done by the “boundary stresses” per unit of the assembly’s original
volume. It is computed from the work rate

Current volume

Initial volume

∫

σijḞikFkj dt (13)

and is cumulative from the beginning of the simulation. In this equation,
σij is the Cauchy stress.

10.3.15 xloops

When algori=2, several time steps will occur within each deformation step
(Section 8.1.2). The program self-monitors the number of cycles that are
required to achieve a near-equilibrium condition before advancing the as-
sembly deformations. The property xloops is the average number of cycles
that were required.

The program currently limits the number of cycles per deformation step
to between nloop1 and 101 (Section 8.1.13). When xloops is consistently re-
ported as 3, the near-equilibrium criteria was met in three or fewer loops (see
Section 8.1.2). When xloops is 101, then the near-equilibrium criteria were
likely not met even after the final cycle. The threshold, near-equilibrium
criteria is currently defined as a value of 0.5(chi1 + chi2) be less than 1%.

10.3.16 viscct

This quantity appears in the A-files, but not in the B-files. The quantity
viscct is the energy expended in viscous contact damping per unit of the
assembly’s original volume (cumulative since the beginning of the simula-
tion). This quantity may not be meaningful when algori=2 (Section 8.1.2).
The increment in viscct for a time step dt is computed as follows:

1

Initial volume
×

∑

Contacts

[

ηnv̄contact, n · v̄contact, n + ηtv̄contact, t · v̄contact, t
]

dt ,

(14)
where ηn and ηt are the coefficients of contact normal and contact tangen-
tial damping, and v̄contact, n and v̄contact, t are the components of contact
deformation velocities in the normal and tangential directions. That is,
the contribution to viscct of a single contact is the contact damping force
ηv̄contact multiplied by the displacement increment v̄contactdt.

49

10.4 B-files with 3D simulations

As with 2D simulations, the first line of the B-file contains a file-type iden-
tifier, the name of the StartFile, and the version of the Oval source code
(see Section 10.3). This line is followed with results for each output cycle.
With 3D simulations, the information for each output cycle is packed into
five lines, such as the following:

2.6000000E-05 5.313745E-06 -5.000000E-05 0.000000E+00 6.161242E-05 5168

9.65E-05 0.000000E+00 0.000000E+00 0.000000E+00 4.398784E+02

1.13E-04 -5.684897E+05 -6.075969E+05 -5.778599E+05 2.126770E-02

0.00E+00 -2.138418E+04 5.103270E+03 -1.097130E+04 2.574228E+01

6.82E-05 5.10E-07 2.169865E-02 0.000000E+00 30.00

These contents correspond to the following variables (some of these are,
in fact, arrays):

timer defout(1,1) defout(2,2) defout(3,3) knrgy ntacts

chi1 defout(1,2) defout(1,3) defout(2,3) pnrgy

chi2 stress(1,1) stress(2,2) stress(3,3) slidet

chi3 stress(1,2) stress(1,3) stress(2,3) work1t

chi4 psi viscbt viscct xloops

and in the following formats:

1pe14.7, 1x, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, i7,/,

1pe15.2, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, /,

1pe15.2, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, /,

1pe15.2, 1pe14.6, 1pe14.6, 1pe14.6, 1pe14.6, /,

1pe15.2, 1pe14.2, 1pe14.6, 1pe14.6, 0pf14.2

These output fields were described in the previous section (10.3).

10.5 F-files: micro-data text files

F-files contain information on the positions of all particles and the status
of all contact forces. These files are created during an Oval simulation
by setting imicro=1 within a deformation-stress segment of the RunFile
(Section 8.2.9). With imicro=1, a set of F-files will be created at the start

of the particular deformation-stress segment. As many as four separate F-
files will be produced, with each containing a different type of information
(Table 3). The files can be quite large: for an assembly of 1000 particles,
a set of 2D F-files is about 300kBytes. Note that the “?” character in a
file name (Table 3) is a 3-digit number (e.g., 005) that corresponds to the
particular segment of the deformation-stress path in which the F-file was
created (Section 8.2.9).

The contents of these text files are described in the following two sections.
You will probably want to use a data analysis package to open, read, and
analyze their data (e.g. Matlab, Octave, Scilab, R, etc.). The various F-files

50

File name Content

Fa?<RunFile> Assembly size
2D Fb?<RunFile> Particle data

Fc?<RunFile> Contact data
Fd?<RunFile> Void cell data

Fa?<RunFile> Assembly size
3D Fb?<RunFile> Particle data

Fc?<RunFile> Contact data

Table 3: Contents of the various F-files. Note that the “?” character in a
file name (Table 3) is a 3-digit number (e.g., 005) that corresponds to the
particular segment of the deformation-stress path in which the F-file was
created (Section 8.2.9).

only contain information on the status of the assembly at a single instance;
they do not provide velocities or other rates. If such rates are of interest,
then you should use a RunFile that will produce two sets of F-files, with the
two files separated by just a few time steps.

10.6 F-files for 2D assemblies

Four F-files are created at once (Table 3), and they are described in the
following four subsections. F-files for 3D assemblies are described in Sec-
tion 10.7. All F-files are created in subroutine micro.

10.6.1 Fa-files for 2D assemblies

These small files give the size of the assembly, the average deformation gra-
dient relative to the start of the simulation, and other general information.
The file consists sixteen lines in the format i3,/,1pe14.7,/,9(3(1pe25.17),/),i2,/,3(1pe17.9,/):

file_identifier

timer

xcell(1,1) xcell(1,2) xcell(1,3)

xcell(2,1) xcell(2,2) xcell(2,3)

xcell(3,1) xcell(3,2) xcell(3,3)

def(1,1) def(1,2) def(1,3)

def(2,1) def(2,2) def(2,3)

def(3,1) def(3,2) def(3,3)

stress(1,1) stress(1,2) stress(1,3)

stress(2,1) stress(2,2) stress(2,3)

stress(3,1) stress(3,2) stress(3,3)

kshape

51

kn

kratio

frict

beta

The file-identifier simply identifies the version of the F-files, in the
event that the file content or format is modified at a later date (This iden-
tifier was introduced in Oval0.6.5). The cell dimension xcell(i,j) were
illustrated in Fig. 3, page 39. The def(i,j) deformations are components of
the deformation gradient F. For 2D assemblies, only four of the nine compo-
nents xcell, def, and stress are meaningful. The meanings of kshape, kn,
kratio, and frict are described in Sections 9.1.1, 8.1.14, 8.1.15, and 8.1.16.

10.6.2 Fb-files for 2D assemblies

These files contain information on the size and position of each particle.
Each line gives data for a single particle, with the lines arranged by particle
number (e.g. line number 3 is for particle 3). The format of each line is
i7,4(1pe17.9),1(1pe18.9), with the fields as follows:

Field 1 hv, a pointer to the DCEL (see Section 10.6.3)
Field 2 Particle half width (Fig. 4, page 40)
Field 3 Aspect ratio, Height/Width (Fig. 4, page 40)
Field 4 x1 position
Field 5 x2 position
Field 6 θ orientation in radians (Fig. 5, page 41)

Note that when hv=0, the particle is in contact with no other particles. The
positions x1 and x2 correspond to the particle centers. See Section 9.2.

10.6.3 Fc-files for 2D assemblies

These fields contain information on every contact within the assembly. The
format of each line is 4(i7),2(i8),2(1pe17.9),5(1pe13.5) (with Hertz-
Mindlin contacts, the value of Tstar in format 1pe13.5 is included at the
end of a line). The information in this file will allow you to reconstruct the
entire topology of the 2D assembly (some data from the Fb- and Fc-files will
also be needed) and to navigate within this topology. Doing this efficiently
requires a rather ingenious data structure called a Doubly-Connected-Edge-
List (DCEL). Although I plan to include a better description in a future
edition of this document, for now you should refer to the text by Preparata
and Shamos (1985), which describes the DCEL and how to use it to navigate
the topology of a 2D planar graph. As an example, Table 4 shows five rows
and the first six columns in an Fc-file (Fig. 7).

52

V1 V2 F1 F2 P1 P2

2233 1 1 4 6172 2
1 3985 1 2 3 6393
1 225 2 3 4 849
1 345 3 4 1 1260

690 2 5 8 2381 7

Table 4: An example DCEL table (Fig. 7).

1

225

345

2233

3985

3

1

6393
2

1

4

3

4

6127

2

849

Figure 7: The particle graph associated with the DCEL of Table 4. The dots
represent particle centers. Lines represent the contacts between particles.

53

• Row 3 in an F-file corresponds to contact 3 (see row 3 in Table 4).

• Contact 3 is between particle number 1 (V1) and particle number 225
(V2) (i.e., rows 1 and 225 in the corresponding Fb-file).

• Void cell 2 (F1) lies on one side of this contact, and void cell 3 lies on
its other side (F2). See Section 20.2 for a further description of void
cells.

• Pointer P1 (= 4) points to a contact (row 4), which is also connected
to V1 (particle number 1) and lies directly clockwise around V1 relative
to the row 3 contact.

• Pointer P2 (= 849) points to the contact (row 849) that is also con-
nected to V2 (= particle 225) and lies clockwise around V2 relative to
the third (row 3) contact.

The hv data in an Fb-files point to the starting (header) contact for a particle
(Section 10.6.2). With this data structure, you will be able to identify all
of the contacts that are connected to an arbitrary particle. You will also
be able to identify all contacts and particles that lie around the perimeter
of a polygonal void cell. That is, you can construct both the particle graph
and its dual (Satake 1992). The hf data in an Fd-file points to the starting
(header) contact for a void cell (Section 10.6.4).

The final seven columns in an Fc-file give the following data:

• branch(1) and branch(2): the horizontal and vertical component
of the branch vector that connects the centers of particles V1 and
V2 (directed toward V2). Note that the format of these two fields is
1pe17.9.

• c eta(1) and c eta(2): the horizontal and vertical components of
the unit normal vector, directed outward from the surface of particle
V1 at the contact location.

• fnold1(1): the magnitude of the contact force component that acts
normal to the contact surface—a positive value for compressive contact
force.

• ftold(1) and ftold(2): the horizontal and vertical components of
the contact force tangential to the contact surface. The force acts
upon particle V1.

• Tstar: For Hertz-Mindlin contacts only (imodel=5, Section 8.1.11).
See (Thornton and Randall 1988).

54

10.6.4 Fd-files for 2D assemblies

The lines of this file contain a single integer in i7 format. The hv integer
on each line is a pointer to the DCEL for a single void cell (Section 10.6.3).
The lines are given in order (for example, line 14 gives the hv value for void
cell number 14).

10.7 F-files for 3D assemblies

Three F-files are created at once (Table 3), and they are described in the
following three subsections.

10.7.1 Fa-files for 3D assemblies

Same data as with 2D assemblies (Section 10.6.1).

10.7.2 Fb-files for 3D assemblies

These files contain information on the size and position of each particle.
Each line gives data for a single particle, with the lines arranged by particle
number (line number 3 in the file is for particle 3).

For 3D assemblies of spheres, the format of each line is 4(1pe17.9),3(1pe18.9e3),
with the following fields for each sphere:

Field 1 radius
Field 2 x1 position of the particle center
Field 3 x2 position of the particle center
Field 4 x3 position of the particle center
Field 5 θ1 angular orientation of the particle (radians)
Field 6 θ2 angular orientation of the particle (radians)
Field 7 θ3 angular orientation of the particle (radians)

For 3D assemblies of ovoids, the format of each line is 7(1pe17.9),3(1pe18.9e3),
with the following fields for each ovoid:

55

Field 1 transverse (revolved) half width (Section 9.2.5)
Field 2 aspect ratio: axial height / transverse width
Field 3 x1 position of the particle center
Field 4 x2 position of the particle center
Field 5 x3 position of the particle center
Field 6 γ1 orientation angle (in degrees) of the particle’s axis,

(Fig. 6, Section 9.2.5)
Field 7 γ2 orientation angle (in degrees) of the particle’s axis,

(Fig. 6, Section 9.2.5)
Field 8 θ1 angular orientation of the particle (radians)
Field 9 θ2 angular orientation of the particle (radians)
Field 10 θ3 angular orientation of the particle (radians)

10.7.3 Fc-files for 3D assemblies

Each line in this file gives information on a single contact.
For 3D assemblies of spheres, the format of each line is 2i7,3(1pe17.9),4(1pe13.5),with

the following fields for each sphere (with Hertz-Mindlin contacts, the value
of Tstar in format 1pe13.5 is included at the end of a line):

• V1 and V2: the two particle numbers

• branch(1), branch(2), and branch(3): the components of the branch
vector that connects the centers of particle V1 and particle V2 (directed
toward V2). Note that the format for these three fields is 1pe16.8.

• fnold1(1): the magnitude of the contact force component that acts
normal to the contact surface—a positive value for compressive forces.

• ftold(1), ftold(2), and ftold(3): the three components of the
portion of the contact force that is tangential to the contact surface.
The force acts upon particle V1.

• Tstar: For Hertz-Mindlin contacts only (imodel=5, Section 8.1.11).
See (Thornton and Randall 1988).

For 3D assemblies of ovoids, the format of each line is 2i7,3(1pe17.9),10(1pe13.5),with
the following fields for each ovoid (with Hertz-Mindlin contacts, the value
of Tstar in format 1pe13.5 is included at the end of a line):

• V1 and V2: the two particle numbers.

• branch(1), branch(2), and branch(3): the components of the branch
vector that connects the centers of particle V1 and particle V2 (directed
toward V2). Note that the format for these three fields is 1pe17.9.

56

• rx i(1), rx i(2), and rx i(3): The components of a vector from the
center of particle V1 to the center of the contact point between the
two particles.

• fnold1(1): the magnitude of the contact force component that acts
normal to the contact surface—a positive value for compressive contact
force.

• ftold(1), ftold(2), and ftold(3): the three components of the
portion of the contact force that is tangential to the contact surface.
The tangential force acts upon particle V1.

• c eta(1), c eta(2), and c eta(3): The three components of the unit
vector that is the outward normal of particle V1 at the contact point.

• Tstar: For Hertz-Mindlin contacts only (imodel=5, Section 8.1.11).
See (Thornton and Randall 1988).

11 Screen output from Oval

As a simulation is running, information is printed to the screen, which can
help to monitor the performance of the run. This information can, of course,
alternatively be redirected from the screen to a file. The following is an
example of the introductory information that might appear on the screen at
the beginning of a simulation:

Program OVAL: version oval-0.5.41.f

c Matthew R. Kuhn 2001, Licensed under the GPL, version 2

The program was compiled under the following parameters:

1) 2D or 3D problems. (mdim1=3)

2) Circular, spherical, elliptical, oval, and ovoid particles. (mpiece=4*mp)

3) A maximum of 10020 particles. (mp)

Errors will occur if your input data is otherwise (but you can always make

changes to the common-0.5.41 file and recompile).

Name of the RunFile:

LoadComp <-- your input here

Name of the StartFile:

Dsphere_1800 <-- your input here

**** Warning ****.

* The input value of rho was 0.

* A mass will be automatically assigned.

**** Warning ****.

* The input value of dt was 0.

* A time step will be automatically assigned.

57

Your time step is: 1.00000E+00

The maximum advised time step is: 1.25000E+00

The assigned particle mass is: 9.76563E+00

Spherical, 3D particles

Number of particles = 1800

Initial void ratio = 0.535828

Initial solids fraction = 0.651115

Initial porosity = 0.348885

Volume of the cell = 2.248245E+03

Initial number of contacts = 5130

Average ratio of overlap/diameter = 3.186E-04

In this example, the names of the two input files are Load1 and Dcircls 1002.
The introductory information is followed by a table of diagnostic informa-
tion that is periodically updated at the interval ipts, as specified in the
RunFile (Section 8.2.6). This table will look something like the following:

Some diagnostic information during this run:

iout timer istep nupd ipt2 xloops chi1 chi2 psi sweep

0 0.0000E+00 1 1 18108 1.0 0.00E+00 0.00E+00 0.00E+00 0.00

1 2.0000E+00 1 1 18108 21.5 1.10E-02 7.73E-03 0.00E+00 0.00

2 4.0000E+00 1 1 18108 3.0 9.81E-03 7.04E-03 0.00E+00 0.00

3 6.0000E+00 1 1 18108 3.0 8.79E-03 6.34E-03 0.00E+00 0.00

4 8.0000E+00 1 1 18108 3.0 7.98E-03 5.74E-03 0.00E+00 0.00

5 1.0000E+01 2 1 18108 3.0 7.14E-03 5.15E-03 0.00E+00 0.00

6 5.8000E+01 2 2 18109 2.9 2.42E-03 1.77E-03 3.68E-06 0.00

7 1.0800E+02 2 2 18109 3.0 3.55E-04 3.77E-04 1.39E-06 0.00

8 1.5800E+02 2 3 18109 3.0 2.68E-04 3.38E-04 1.17E-06 0.00

Most items in the table were described in Section 10.3. The integer istep

is the current deformation-stress segment (from the RunFile, Section 8.2).
The integer nupdat is the number of near-neighbor searches that have been
performed (see Section 8.1.19). The integer ipt2 is the current length of
the near-neighbor linked list (Section 8.1.19). The value xloops is the av-
erage number of iteration loops (time steps) per deformation step. When
algori=1, then xloops will always be one. The values , , and indicate the
numeric performance of the run (see Sections 10.3.5, 10.3.9, and 10.3.8 and
the other sections referenced from there). The value sweep is the average
number of iterations per torus-torus contact when ovoids are being used.

12 Sample assemblies for Oval

You can download sample StartFile assemblies, which are given in a D-file
(text) format, from the web site given on page 12. The sample StartFiles

58

Particle No. of Void Coord. Dimensionless
File Name Type Particles Ratio Number5 Overlap

Dcircls 1002 21 circles 1002 0.18042 3.820 3.10×10−4

Dcircls 4008 21 circles 4008 0.17911 3.813 3.19×10−4

Dovals 1002 1d ovals 1002 0.18382 3.784 2.32×10−4

Dovals 1002 2d ovals 1002 0.12890 4.880 1.58×10−4

Dovals 4008 1d ovals 4008 0.18479 3.777 2.10×10−4

Dovals 4008 2d ovals 4008 0.12788 4.733 1.72×10−4

Dsphere 1800 spheres 1800 0.53583 5.700 3.19×10−4

DOblate 18002 ovoids 1800 0.41520 8.214 1.65×10−4

DProlate 18003 ovoids 1800 0.41223 8.438 2.01×10−4

DObProlate 18004 ovoids 1800 0.41367 8.351 2.01×10−4

1The assemblies Dcircls 1002 and Dcircls 4008 in Oval version 0.4.0

have been replaced. These older assemblies were slightly anisotropic.
2Oblate ovoids with randomly assigned aspect ratios. The aspect ratio is
uniformly distributed between 0.65 and 1.00.
3Prolate ovoids with randomly assigned aspect ratios. The aspect ratio
is uniformly distributed between 1.00 and 1.60.
4A combination of oblate and prolate ovoids with randomly assigned as-
pect ratios. The aspect ratio is uniformly distributed between 0.65 and
1.60.
5The coordination number is computed as twice the number of contacts
divided by the number of particles.

Table 5: Attributes of several sample assemblies

should be located in your oval directory in

samples/startfiles

The primary attributes of these assemblies are shown in Table 5. Each
assembly is roughly square (or cubical) and with an isotropic fabric. They
were created by isotropically compressing a sparse assembly with friction
turned off.

The assemblies contain a range of particles sizes. The dimensions of the
particles and the entire assemblies have been scaled so that the mean particle
size D50 in each assembly is 1.00. (Here, we speak of the mean particle size
D50 in the usual sense of geotechnical engineering: a “median” diameter that
partitions the assembly into two sets of particles, so that each set has an
equal cumulative mass.) A density plot (normalized histogram) of particle
radii for both 2D and 3D assemblies is shown in Fig. 8. The histogram is
centered on the median size 0.50D50. In Fig. 8a, the radii of non-circular 2D
particles refers to their mean radii, (Height+Width)/4 (Fig. 5, Section 9.2).
In Fig. 8b, the radii of non-spherical 3D particles refers to their mean radii,

59

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

Particle radius

D
en

si
ty

(a) 2D assemblies

0.4 0.6 0.8 1.0

0.
0

1.
5

3.
0

Particle radius

D
en

si
ty

(b) 3D assemblies

Figure 8: Histograms of particle radii for 2D and 3D assemblies

(Height + 2 · Width)/6 The distribution of aspect ratios for oval and ovoid
assemblies are described in the footnotes of Table 5.

The void ratio is a measure of the packing density of a granular assembly
(Table 5). The assemblies of circles, spheres, and ovoids are fairly dense.
Both loose and dense assemblies of ovals are provided. The coordination
numbers shown in Table 5 are computed as twice the number of contacts
divided by the number of particles.

Among the attributes listed in Table 5, the dimensionless overlap prob-
ably has the greatest effect on the speed and performance of a simulation.
The dimensionless overlaps, which are quite small, were computed by divid-
ing the average overlap at the particle contacts by the mean particle size,
D50. Small overlaps more closely resemble those in real granular materials,
which are often composed of hard granules. During simulations, however,
small overlaps require slower deformation rates to assure the near quasi-
static progression of particle rearrangements.

In addition to the files in Table 5, the website includes a directory
samples/startfiles/Series circls 1002/ that contains 100 assemblies
of 1002 circular particles. The particle size distribution in each assembly is
the same as that of Dcircls 1002 2 in Table 5 and Fig. 8a. Each assembly
has exactly the same particle sizes and the same void ratio (=0.174257),
but the assemblies have different particle arrangements. As a result of this
difference, the files will have modest differences in the number of contact,
dimensionless overlap, and initial stress. The assemblies were constructed
with the same process, but the the particle radii were shuffled among the
particles before the diffuse assembly was compacted.

60

Start File Particle No. of Run
Name Type Particles Time

Dcircls 4008 circles 4008 19m 52s
Dovals 1002 2 ovals 1002 9m 51s
Dovals 4008 2 ovals 4008 43m 10s
Dsphere 1800 spheres 1800 19m 21s

Table 6: Execution times for simulations with the RunFile shown in Fig. 1,
page 24 and various StartFile assemblies (Table 5). The times are with an
Intel Pentium III 450MHz processor.

13 Example simulations using Oval

As an example simulation, consider the RunFile named LoadComp shown
on page 24. After a brief initial period in which the assembly is allowed to
equilibrate, the assembly is vertically compressed while maintaining constant
horizontal stress (Ḟ22 < 0, Ḟ11 = 0). For 3D assemblies, the deformations
were under plane strain conditions (Ḟ33 = 0). The results for all of the larger
assemblies are shown in Fig. 9 and are archived at the web site (page 12).
These results can also be found in the your oval directory in

samples/results

The deviator stress in Fig. 9 has been normalized by dividing by the initial
mean stress, po. Note the quite large difference in strengths of the loose and
dense assemblies of ovals. The loose assembly (created quite by accident)
is much weaker than the assembly of circular discs, even though the two
assemblies have nearly the same void ratio. The strength of the 3D assembly
of spheres is much larger than that of the 2D assembly of circles, which is
due, in part, to the plane strain conditions during compression of the 3D
assembly. The execution times for the three tests are shown in Table 6, using
an Intel Pentium III 450MHz machine and executable binaries produced by
the pgf77 Linux compiler. As can be seen in the table, the execution time
is roughly proportional to the number of particles. Oval particles require
about twice the time of circular particles. Spherical particles also require
about twice the time of circular particles.

14 Some advice on using Oval

When Oval is properly used, the program is efficient and provides repeat-
able results. The program can be maddening, however, when it is unknow-
ingly being stretched beyond its limits. You may want to consider the fol-
lowing advice.

61

1800 spheres
4008 ovals, dense
4008 ovals, loose
4008 circles

Vertical strain, ε22

D
ev

ia
to

r
st

re
ss

,
(σ

2
2
−

σ
1
1
)/

p
o

0.0050.0040.0030.0020.0010

4

3

2

1

0

(a)

1800 spheres
4008 ovals, dense
4008 ovals, loose
4008 circles

Vertical strain, ε22

V
o
lu

m
e

st
ra

in
,

1 2
ε k

k
o
r

1 3
ε k

k

0.0050.0040.0030.0020.0010

0.006

0.005

0.004

0.003

0.002

0.001

0

-0.001

(b)

Figure 9: Results for both 2D and 3D materials: deviator stress and volu-
metric behavior.

62

1. Slow is (usually) better. When choosing deformation or stress rates
with the input values defrat(i,j), the program’s performance can be
greatly improved by choosing appropriately slow rates (Section 8.2.1
and 8.2.2). What is an appropriate rate? If the rate is too slow,
you will needlessly waste time (days, weeks, months) waiting for your
simulation to finish. If the rate is too fast, the program will either fail
to maintain quasi-static conditions (when algori=1, Section 8.1.2),
will run excessively slow while attempting to establish quasi-static
conditions (when algori=2), or will crash. A common error message
upon crashing is the following:

An illegitimate contact in subroutin lister.

This error occurs when the particle velocities are excessive, caus-
ing two particles that were previously not even in the linked-list of
near-neighbors to come into contact within a single time step (Sec-
tion 8.1.19). Oval will not stop running, but if this message repeat-
edly occurs or the results become erratic, you will probably want to
reduce the deformation rate. (I am fairly tolerant of this error when
I am not particularly interested in the accuracy of the results, for ex-
ample when I am preparing an assembly from a sparse arrangement
of particles.)

The proper deformation rate depends primarily on (and is almost pro-
portional to) the average overlap among particles in their initial config-
uration. If the overlaps are too large (relative to the particle radii), the
simulation will not be very realistic. With smaller average overlaps,
slower deformation rates will be required to maintain nearly quasi-
static conditions. Note that the relative overlaps are fairly small for
the sample assemblies that are included in the Oval package (Table 5,
page 59).

The best way to determine a suitable deformation rate may be by
trial and error. If you are testing an initially dense assembly, choose
algori=2 and try a few defrat values. The first deformation-stress
control segment, however, should not involve any deformation. A be-
ginning period of quiescence is required to allow the initial particle
arrangement to come to near-equilibrium. The first segment should,
therefore, have icontr=000000 and should be long enough (igoal=70,
with sufficient time finalv) to allow a enough steps for the initial par-
ticle arrangement to equilibrate (Sections 8.2.3 and 8.2.1).

The second and subsequent stress-deformation control segments are
where you can test the deformation rate. As the program runs and
output appears on the screen, wait until these segments are entered

63

(see the istep values on the screen output, page 58), and then mon-
itor the values of chi1, chi2, and xloops (Sections 10.3.5, 10.3.9,
and 10.3.15). The option algori=2 provides a minimum of 3 equili-
brating time steps per deformation step, with a maximum of 101 time
steps (Section 8.1.2). If xloops is consistently 3.0, you can probably
increase the trial deformation rate. If xloops is consistently much
greater than 3.0, then the deformation rates are probably too high. I
usually try to keep xloops near 3 or 4 and chi1 and chi2 below 0.005.

2. For diffuse, sparse assemblies, use algori=1 (Section 8.1.2). This will
be the case if you are trying to compact a gaseous assembly into a
dense one. For dense assemblies, use algori=2, as this will enforce a
self-regulating mechanism for maintain nearly quasi-static conditions.

3. I sometimes give the particles initial velocities (rmsvel>0) to help in
densifying an initially loose particle arrangement. As has already been
stated, slow is usually better. If you get the message,

An illegitimate contact in subroutin lister.

then you have probably assigned an rmsvel value that is too large.

4. When starting a simulation with a D-file or E-file, the particles will
likely not be in an equilibrium configuration, since these files only
specify the particle positions and provide no information about the
contact forces (see istart=3, Section 8.1.7). This means that the ini-
tial calculation of contact forces will give zero tangential force, a con-
dition not likely to produce equilibrium. The first deformation-stress
segment, therefore, should not involve any deformation. Instead, a be-
ginning period of quiescence is required to allow for the initial particle
arrangement to come to near-equilibrium. The first segment should,
therefore, have icontr=000000 and should be long enough (igoal=70,
with sufficient time finalv) to allow a few time steps for the initial
particle arrangement to equilibrate (Sections 8.2.3 and 8.2.1). The
second and subsequent stress-deformation control segments are where
you can start the desired deformation process.

5. Binary E-file and C-file formats might not be portable between differ-
ent platforms or operating systems.

6. If you are assigning initial random velocities to the particles (an input
value rmsvel6=0), do not assign velocities that are too large. You
will probably need to reduce the value of rmsvel if you get the error
message:

64

An illegitimate contact in subroutine lister.

See item 1 above.

7. Oval does not work when the assembly contains too few particles,
say fewer than nine 2D particles or twenty-seven 3D particles. This
problem is related to the use of periodic boundaries. As an example,
consider a square arrangement of four particles of equal size with this
arrangement:

Each particle touches a neighboring particle twice: once within the
core assembly and once again across a periodic boundary. Oval’s
underlying data structure allows for a single contact per particle pair.
This problem is avoided with a larger number of particles. (Thanks to
Csilla and Tamás.)

8. Do not try to control a boundary stress when the boundary stress is
zero. For example, an input value icontr=11100 will not work with a
diffuse, gaseous assembly (Section 8.2.1).

9. If you get an error message that your input files can not be properly
read, you will want to carefully check the formatting of the file’s in-
put fields. Microsoft Windows users may have problems with hidden
characters that can be embedded in files when using Word and Word
Pad. You will probably want to install a genuine text processor and
avoid using word processors.

10. If at the start of a simulation you get the unexpected message, “Name
of a platen file:”, then you have probably given nplatn a non-
zero value in your RunFile (see Section 8.1.12).

15 The OvalPlot process

Like its partner Oval, OvalPlot is not an interactive program with a
refined user interface. You would normally run OvalPlot and its various
utility programs from within a terminal (e.g. an xterm window or DOS
console). The complete process, from the running of Oval to the printing
of the graphical output, is shown schematically in Fig. 10. In this figure,

65

Macro-results:
A-file (text)
B-file (text)

StartFiles:
C-files (binary)
D-file (text)
E-file (binary)

dvi viewerK:

Postscript to pdfN: Postscript viewer/printerN:

N: pdf viewer

E: G-files

OvalPlot

Oval

LATEX

H: *.tex output

J: *.dvi output

dvi to Postscript

M: *.ps output

A: RunFile B: StartFile

F: ConfigFile

I:

L:

G:

C:

Micro-results:
F-files (text)

Figure 10: The OvalPlot process.

66

the solid boxes designate executable processes. The phantom boxes show
the input and output files of these processes.

The steps that are shown in Fig. 10 are described below. Further details
are provided throughout this document. You should also consult Section 14,
“Some advice.”

A. Create a RunFile, which will describe the manner and sequencing of the
DEM simulation (Section 8). Samples can be found in the directory

oval/samples/runfiles

B. Create a StartFile, which gives the initial arrangement of the particles.
There are three forms of StartFiles, and all are described in Sections 8.1.7,
8.1.8, 8.2.7, and 9. Although it is possible to write your own StartFiles
for simple, regular particle arrangements, creating irregular packings of
multi-sized particles is quite involved. You may want to use the sample
StartFiles that are provided with the Oval package (in your directory
samples/startfiles). I plan to describe my own methods for produc-
ing such packings in a future revision of this documentation, but I would
also like to include descriptions of your own methods and include your
own StartFiles as samples in the Oval package. Please send them along
with a brief description!

Note that StartFiles can be created as output files during the running of
Oval. All of the sample StartFiles were created by running and rerunning
Oval, using the output from on simulation as the input to another, until
the final assembly was formed.

C. Run Oval using the input from steps A and B. This process is described
in Section 6.

D. The output from Oval can take many forms (see Table 2, page 19, for
a summary). Besides creating new StartFiles, the output can include
summaries of the macro-level results (A-files and B-files, Sections 10.1–
10.4). and micro-level results (F-files, Sections 10.5–10.7). A-files can
be imported into a spreadsheet (Section 10.1), B-files can be read with
a text editor (Section 10.2), and F-files are intended for use with data
analysis packages such as Matlab, Scilab, R, etc. Note that the C, D,
and E StartFiles can be used as input to subsequent Oval simulations
(step C).

E. The output from Oval can also include G-files, which are the binary in-
put files that will be used for creating graphics plots (see Sections 8.2.13,
17, and 18).

67

F. Create a ConfigFile for configuring the graphics output (Section 16). You
should also create the path directory that is given in the ConfigFile. Place
a copy of the file texdraw oval.tex into the new directory.

G. Run OvalPlot, using the output from steps E and F. Your ConfigFile
should reside in the same directory from which OvalPlot is run. See
Section 18.

H. The output from OvalPlot is a Latex file with embedded graphics
formatting. The name of the output Latex *.tex file will appear on the
screen while running OvalPlot. For example:

Output file: results/dummy_cell_def.tex

This file will require several steps of processing before the results can be
realized in a displayed or printed form.

I. Run Latex:

latex <file name>.tex

using the file name that was displayed while running OvalPlot (step
G). You will need to install the LATEX software package before performing
this step (see Section 5, page 17).

You may need to change into the directory that contains the file <file

name>.tex before performing this (and subsequent) steps.

The directory within which you run OvalPlot must contain the special
texdraw oval.tex macro file (item 4 in Section 4.1). Without this
file, Latex will not run.

J. The output from Latex will include a binary *.dvi file and several
postscript fragment files (e.g. *.ps1, *.ps2, etc.).

K. You can display the graphical output with a dvi viewer (Section 5,
page 17), or . . .

L. You can run dvips to produce a postscript file:

dvips -o <file name>.ps <file name>

M. You will now have a postscript file for producing the printed output with
Ghostscript or similar software (item 6 in Section 5).

N. You can view and print the postscript file with the Ghostview viewer or
Adobe Acrobat Distiller. You can also convert the postscript file to pdf
format for viewing and printing with Ghostscript, xpdf, or the Adobe
Acrobat package (items 6–8 in Section 5).

68

16 The ConfigFile

The ConfigFile describes the style of graphical presentation. An example is
given in Fig. 11, and a sample ConfigFile can be found in your main oval

directory in samples/plot. Before running OvalPlot, you should place a
copy of your own ConfigFile in the same directory from which OvalPlot is
run. You can then customize your ConfigFile as needed.

A ConfigFile consists of the following four parts:

• a single title line (Section 16.1)

• a single path line (Section 16.2)

• a series of 16 formatted lines that provide integer input (Sections 16.3
to 16.16)

• a series of 7 formatted lines that provide floating point data (Sec-
tions 16.17 to 16.19))

The format of these 25 lines is

a80,/,a80,15(/,i16),7(/,f16.7)

and each data item is detailed in the sections below.

16.1 title (a80)

The title could include, perhaps, information on the nature of the simulation.
At present, the variable title is not used within the program nor is it echoed
to any output files.

16.2 path (a80)

This gives the directory path (relative to the current path) for placing the
output from OvalPlot. Eight or more files can be generated for each plot,
so you will probably want to place this output into a separate directory. It
is important, however, that the directory (path) given by the input value
path actually exists. Create this directory before running OvalPlot.

The path name should begin in the first column of the line: don’t put
any blank spaces before the path name.

You must place a copy of the file texdraw oval.tex into the new di-
rectory (see page 12). A copy of this file can be found under your oval

directory in sources (see page 12).

69

Prototype ConfigFile for the DEM plotting program OvalPlot

results : apath | path of the output directory

1 : iform | format of output latex graphics=1

1 : ipaper | paper size 0=special 1=USletter 2=EuroA4

1 : iheadr | include headers and footers ? 0=no 1=yes

1 : iscal1 | include a length scale bar ? 0=no 1=yes

1 : iscal2 | include an intensity scale bar? 0=no 1=yes

1 : icircl | circles at the origins of arrows? 0=no 1=yes

1 : iarrow | an arrow at the terminus of arrows? 0=no 1=yes

0 : ilabel | labels for particles and void cells? 0=no 1=yes

12 : ifont | base font size (Latex choices: 10, 11, or 12 pt)

3 : jfont | font size (Latex: 0=tiny -> 4=normal -> 9=Huge)

2 : istran | reported strain: 0=none, 1=(11), 2=(22), 3=(12)

1 : ncopy(1) | wallpaper copies in the x_1 direction

1 : ncopy(2) | wallpaper copies in the x_2 direction

0 : iplast | plots of elastic/inelastic rates? 0=no 1=yes

0 : isub | plot a subset of the assembly? 0=no 1=yes

1. : vivid | alter the default vividness of the plots

1000. : mheigh | max. height of the plot (when ipaper=0)

1000. : mwidth | max. width of the plot (when ipaper=0)

0.2 : x1min | min. x1 of a subset (when isub=1)

0.4 : x1max | max. x1 of a subset (when isub=1)

0.2 : x2min | min. x2 of a subset (when isub=1)

0.6 : x2max | max. x2 of a subset (when isub=1)

0. : sclwid | width of the color scale bar (0.=default)

Figure 11: An example ConfigFile.

70

16.3 iform (i16)

The form of the output:

iform=0 This option is not currently available

iform=1 Latex graphics will be produced. See Section 15 and Fig. 15,
which discusses the procedure for processing the Latex output
so that the graphics can be displayed on the screen or sent to
a printer.

16.4 ipaper (i16)

The paper size for the graphics output.

ipaper=0 A user-specified size. When ipaper=0, the ConfigFile input
mheigh and mwidth will determine the actual height and width
of the graphics (Section 16.18). This option is useful when you
wish to scale the graphics to a specific size (for example, for
an embedded graphic in a report, slide, etc.)

ipaper=1 The graphics will be scaled to fit on US Letter paper, leaving
room for margins.

ipaper=2 The graphics will be scaled to fit on A4 paper, leaving room
for margins.

16.5 iheadr (i16)

If desired, OvalPlot will produce headers and footers on the graphics page.
See Section 19.1 for the contents of headers and footers.

iheadr=0 No headers or footers. I use this option when the graphics will
be imported into a report as a figure, and headers and footers
must be stripped from the graphics.

iheadr=1 Include headers and footers (Section 19.1).

16.6 iscal1 (i16)

OvalPlot can include a bar that provides a length scale for the plot. See
Section 19.2 for a description of the length scale bar.

iscal1=0 No length scale bar.

iscal1=1 Include a length scale bar.

71

16.7 iscal2 (i16)

OvalPlot can include a scale that shows the intensity of movements,
stress, force, rotation, etc. The various intensity scales are described in
Section 19.3.

iscal2=0 No intensity scale.

iscal2=1 Include an intensity scale.

16.8 icircl (i16)

When vectors are plotted, a small circle can be placed at the start of each
vector.

icircl=0 No circles.

icircl=1 Include circles.

16.9 iarrow (i16)

When vectors are plotted, an arrowhead can be placed at the end of each
vector.

iarrow=0 No arrowheads.

iarrow=1 Include arrowheads.

16.10 ilabel (i16)

OvalPlot can place numeric labels on the particles and void cells. Not all
plotting formats are supported (see Table 7, page 82).

ilabel=0 No labels.

ilabel=1 Include labels. You may also want to adjust the font sizes to
avoid a forest of overlapping labels (see Sections 16.11 and 16.12).

16.11 ifont (i16)

The Latex base font size. With Latex, a base font size is selected, usually
for an entire document, and then variations are made relative to the base
size (Section 16.12). There are only three base font sizes.

ifont=10 A 10 point base font.

ifont=11 A 11 point base font.

ifont=12 A 12 point base font.

72

16.12 jfont (i16)

The Latex font size relative to the base font size. For example to produce
the smallest possible fonts (which I will use when placing labels on each
particle, Section 16.10), you would combine ifont=10 and jfont=0. The
largest possible font is produced with ifont=12 and jfont=9.

jfont= 0 tiny 5 large
1 scriptsize 6 Large
2 footnotesize 7 LARGE
3 small 8 huge
4 normalsize 9 Huge

16.13 istran (i16)

OvalPlot can report the strain level of the plot in the upper right header
(Sections 19.1 and 16.5). This feature can be used to help identify the origin
of individual plots among stacks of similar plots. OvalPlot has no way,
however, of guessing the particular strain component that would be most
useful for you. As an example, if you are running shear tests, istran=3

would be most appropriate.

istran=1 Report the 11 strain component.

istran=2 Report the 22 strain component.

istran=3 Report the 12 strain component.

The strains reported by Oval and OvalPlot are a bit unusual. See Sec-
tions 10.1 and 10.3.2 for a description.

The input value istran is also used in computing the elastic component
of deformation (see page 78).

16.14 ncopy(1), ncopy(2) (i16)

This feature allows you to “tile” multiple copies of an assembly with peri-
odic boundaries. The values of both ncopy(1) and ncopy(2) are normally
set to one, so that only a single assembly is displayed in the plot. When, for
example, ncopy(1)=3, three assemblies are tiled side-by-side. Figure 17a
(page 97) shows an example with ncopy(1)=2 and ncopy(2)=1. When
ncopy(2) is greater than one, the assembly is also tiled vertically.

73

16.15 iplast (i16)

OvalPlot can be used for separately displaying the elastic (recoverable)
and inelastic (permanent) deformations and movements. See Section 17 for
information on creating the necessary G-file input.

iplast=0 Do not separate the results into elastic or inelastic contribu-
tions. Instead, plot the total movements and deformations.
This option requires, at most, two G-files (Section 17).

iplast=1 Calculate the separate elastic or inelastic contributions to de-
formations and movements. When running OvalPlot with
this option, you will be queried whether you want to dis-
play the elastic, inelastic, or total deformations (Section 21.6).
Three G-files will be required (Section 17). Note that this
option is not supported with all plot types (Table 7, page 82).

16.16 isub (i16)

OvalPlot can isolate and plot a subset of the entire assembly.

isub=0 Plot the entire assembly.

isub=1 Plot a subset of the assembly. The subset will only include par-
ticles that lie within a designated “window.” See Section 16.19
for the manner in which the window is defined within the Con-
figFile.

16.17 vivid (f16.7)

The graphic plots illustrate the magnitudes of particular micro-quantities
by using several graphics strategies: arrow vectors, line thicknesses, colors,
color intensities, etc. I have established a default scaling system that au-
tomatically adjusts the scaling in each strategy to provide reasonably lucid
plots (at least with the sample assemblies that I tested). For example, ar-
row vectors are used for illustrating particle movements. The default scaling
attempts to display these arrows at lengths that are short enough to avoid
a dense tangled forest of arrows, but with arrows that are long enough to
reveal both patterned and amorphous behaviors (see Fig. 17a).

You can alter this default scaling to perhaps better reveal a particular
micro-feature. This alteration is done with the configuration variable vivid.

vivid=1.0 Use the default scaling of colors, vector lengths, line widths,
etc.

74

vivid6=1.0 Scale the default coloration, vector lengths, etc. Values of
vivid greater than one will have the following effects:

• vector arrow lengths are increased

• line widths become thicker

• colors become less intense (more pale)

Vivid must be greater than zero.

16.18 mheigh, mwidth (f16.7)

When ipaper=0, the input values mheigh and mwidth give the height and
width of the graphics plot in inches (sorry!). When ipaper6=0, the values
of mheigh and mwidth are ignored. The dimensions mheigh and mwidth

are only approximate, and some tweaking may be necessary to get an exact
desired size. For example, the true height of a plot depends upon such
complexities as inter-line spacings and font size, and these factors are only
approximated in the application of mheigh.

16.19 x1min,x1max,x2min,x2max (f16.7)

When isub=0, these four values are ignored. When isub=1, the four values
define the “window” that will be used to isolate and plot a subset of the
assembly (Section 16.16). Each input value should be in the range of 0.0 to
1.0. Each value is referenced to either the full height or full width of the
assembly. For example, if x1min=0.333 and x1max=0.333, the plot will only
include particles whose centers lie within the middle 1/3 of the assembly, and
particles outside of the middle 1/3 will be ignored. At present, OvalPlot

does not support subsets that straddle periodic boundaries.

16.20 sclwid (f16.7)

The value of sclwid is the approximate width of the intensity scale (Sec-
tion 19.3). When sclwid=0., then the width will be about half the width
of the plot.

17 Creating the G-files

The graphics input to OvalPlot is created by first running a DEM sim-
ulation with Oval, which produces the necessary G-files (see Sections 15
and 18). These files can be quite large: for an assembly of 1000 particles, a
binary G-file will be about 200kBytes.

75

• For plots that only show the assembly’s status at a particular time,
only a single G-file is required. These plots include simple graphics
of particle locations, the particle graph (topology), and contact forces
(ktype=1-4, Sections 20.1 to 20.4 and Table 7, page 82). Before run-
ning Oval, set iplot=1 in the RunFile to create a G-file at the the
beginning of a deformation-stress segment (Section 8.2.13). For exam-
ple, the following input at the bottom of a RunFile could be used to
create a G-file at a vertical strain of 1% (= 0.2 × 10−5 × 5000):

0. : rfree3 | unused in

0.250 : dt | time incr

********** Controlling Strain krotat iplot

(100000) (10000) (1000) | |

icontr| rate_11 | rate_22 | rate_33 | igoal finalv |

------|---------|---------|---------| |--|-|---------| |--|

000000 0. 0. 0. 70 0 2.5 0

100000 0. -0.2e-5 0. ... 70 0 5000.0 ... 0

100000 0. -0.2e-5 0. 70 0 0.25 1

• Two G-files are required for plots that depict rates or changes within
the assembly: particle velocities, rotation rates, inter-particle move-
ments, deformations, etc. (ktype=10-23, Sections 20.5 to 20.14). The
output plots will display these rates in a dimensionless form. For ex-
ample, the velocity of the kth particle is computed as the change in
its position between two G-files divided by D50 and the change in
deformation:

(x2
2nd − x2

1st)/(D50|L|) (15)

where |L| is the tensor norm of the approximate velocity gradient,

|L| =
∣

∣(F2nd − F1st) · F−1
1st

∣

∣ (16)

Other types of plots involve similar dimensionless quantities.

As an example, the following RunFile could be used as input to Oval

for creating two G-Files.

0. : rfree3 | unused in

0.250 : dt | time incr

********** Controlling Strain krotat iplot

(100000) (10000) (1000) | |

icontr| rate_11 | rate_22 | rate_33 | igoal finalv |

------|---------|---------|---------| |--|-|---------| |--|

000000 0. 0. 0. 70 0 2.5 0

100000 0. -0.2e-5 0. ... 70 0 5000.0 ... 0

100000 0. -0.2e-5 0. 70 0 5.00 1

100000 0. -0.2e-5 0. 70 0 0.25 1

76

0.035 0.036

0.69

0.7

0.71

���������
	��
�
����	����
���������������
����� 	!�
"�	!�#�

$&% ''
(*) +

�-,.��/�0�
�213#4 353535657�8
�-,9��: 0�
� 13;4 353�3�<�=58�-,.���
� 1 3#4 353;>?8

A

B

C

Figure 12: A cycle of loading, unloading, and reloading to produce three
G-files.

The first file is created at a vertical strain of 1%, and the second file
is created at a strain of 1.001%. Note that 20 time steps will separate
the two G-files (= 5.00/0.250).

• Three G-files are required when OvalPlot must separate the elastic
and inelastic effects. The scheme is shown in Fig. 12, which gives a
detailed view of stress and strain during a cycle of loading, unloading,
and reloading. The three G-files would be produced by Oval at states
A, B, and C. When unloading, Oval should collect the data at a state
C at which the stress is roughly the same as at state A. This may
require some guessing and retrying to determine the correct number
of time steps between the three states. The following run RunFile could
be used to create a small cycle of loading, unloading, and reloading:

0. : rfree3 | unused in

5.000 : dt | time incr

********** Controlling Strain krotat iplot

(100000) (10000) (1000) | |

icontr| rate_11 | rate_22 | rate_33 | igoal finalv |

------|---------|---------|---------| |--|-|---------| |--|

000000 0. 0. 0. 70 0 2.5 0

100000 0. -0.2e-5 0. ... 70 0 175.0 ... 0

100000 0. -0.2e-5 0. 70 0 5.0 1

101000 0. 0.2e-5 0. 70 0 2.5 1

100000 0. -0.2e-5 0. 70 0 100.0 1

In this example, the second deformation-stress segment vertically com-

77

presses the assembly to a strain of 0.035%. A G-file is then created at
the beginning of the next (third) deformation-stress segment, and this
G-file will represent state A in Fig. 12. During the third deformation-
stress segment, the vertical compression continues for 10 more time
steps until the vertical strain is 0.036%. Another G-file is created at
the beginning of the next (fourth) deformation-stress segment, and this
second G-file will represent state B in Fig. 12. The fourth deformation-
stress segment unloads the assembly during 5 time steps, reducing the
vertical strain to 0.0355% (note that the horizontal stress σ11 and
shear stress σ12 are held constant during this unloading segment). At
the beginning of the final deformation-stress segment, a third G-file is
created (state C), and then the compressive loading resumes for an-
other 20 time steps. OvalPlot calculates the proportion of elastic
deformation for this cycle with the following formula:

Proportion of elastic deformation =
σB − σA

σB − σC
(17)

Because of the difficulty in returning all stress components to their
original values during a load cycle, the stress component specified by
istran is used in equation 17 (see Section 16.13).

18 Running OvalPlot

Before running OvalPlot, the program will need to be installed along
with a number of associated utilities (Sections 4 and 5). You will also
need to create the directory (folder) into which the graphics output files
will be placed, consistent with the input value of path in the ConfigFile
(Section 16.2). You would normally run OvalPlot from within a terminal
(e.g. an xterm window or DOS console) with the following command at the
shell prompt:

<path>ovalplot

where <path> is the path to your executable ovalplot file. Of course, the
<path> is not required if it is included in your system’s path search definition
$PATH.

You will then be immediately prompted for the name of your ConfigFile:

Name of the ConfigFile:

and the prefix name of the output files:

Name of the output file prefix:

78

You will then be queried for the type of plot that you would like to produce:

Which type of plot (or data) do you want to produce ?

** Status plots:

1) Particle locations

2) Particle graph of void cells

3) Contact forces (force chains)

4) Contact force contributions to the average stress

** Rate plots:

10) Particle movements

11) Particle rotations

12) Particle movements and rotations

13) Deformations within the void cells

15) Relative particle movements at the contacts

16) Contribution of inter-particle movements to deformation

17) Contact force rates

18) Contact force rate contributions to the average stress rate

19) Particle rotations around the void cells

20) Particle rotation gradients around the void cells

21) Contact dislocation lines (Murakami et al.)

22) Frictional contact sliding

23) Energy dissipation at sliding contacts

The various plot types are described in Section 20. Depending upon the
type of plot and whether you wish to separate the elastic/inelastic deforma-
tions, you will be asked for the names of either one, two, or three G-files
(Section 17):

Name of the first G-type input file:

Name of the second G-type input file:

Name of the third G-type input file:

Depending on the type of plot, you will also be asked to select among various
options (Section 21). OvalPlot will run and create a Latex *.tex file for
producing the graphics results. You will then need to perform the remaining
steps that were outlined in Section 15 for producing the screen display or
printed output (items I–N, Section 15 and Fig. 10, page 66).

19 Other items on the graphics page

Besides the main graphics plot, several other items can also be placed on
the graphics page. These items are optional, and their inclusion depends
upon the configuration input in your ConfigFile (Section 16).

19.1 Headers and footers

When included, the left header gives a general description of the type of file,
for example,

79

Mag. of right slip deformation (due to tangential movements) (rel. to avg. def.)

The right header gives the strain at which the graphics information was
collected (see istran, Section 16.13). The left footer lists the names of
the graphics G-files that were used as input in creating the plot. The
right footer includes the current date and your versions of both Oval and
OvalPlot. Headers and footers are only included when the configuration
option iheadr=1 is given in the ConfigFile (Section 16.5).

19.2 Length scale

A length scale bar can be placed above the graphical plot. The scale bar
will look something like this:

@ ACBED?F
G2H#IKJ LNMPO�QSR TUH

The size D50 is the median particle diameter, as was described in Section 12,
page 59. The length scale is included only when the configuration option
iscal1=1 is given in the ConfigFile (Section 16.6).

19.3 Intensity scales

OvalPlot can produce a scale that shows the intensity of movements,
stress, force, rotation, etc. Several of these are shown below.

• Velocity vectors

VXW&YZV [ZW [ZW&YZV \�W \�W&YZV
]�^`_
acb dfehg`]idkjmln.o dZpKq rts?u�vwln v

• Rotations and deformations. The width of this bar can be controlled
by the input value of sclwid in the ConfigFile (Section 16.20).

xzy�{ xz|�{ x�}Z{ ~X{ }Z{ |�{ y�{

�.�Z�K�w�� �

• Velocities together with rotations

�������Z���Z���z��`�i�f�m��9� � �?�X�
���?�9�w�� ��� �Z�& Z¡ ¢ �Z�?£���¤ �X�;�¥ �Z���w�� � �Z�& Z¡

80

• Contact (inter-particle) movements and contact forces

¦X§ ¦X§�¨ ¦X§&© ªZ§&«

¬`­®°¯ ¬?±³²
´�µ?¶.¬w·¸ ¬�¹

The intensity scale is included only when the configuration option iscal2=1

is given in the ConfigFile (Section 16.7).

20 Plot types in OvalPlot

Table 7 lists the various types of plots that can currently be produced with
OvalPlot. You would select the type of plot at the start of an OvalPlot

run. (see Section 18, page 79). The table also gives the options that are
available with each plot type (refer to Section 21 for more details on each
option).

The Latex output for each plot type is given a different name, of the
form:

<your prefix><plot type name>.tex

where <your prefix> is the prefix name that you would provide as input at
the start of OvalPlot (Section 18, page 78), and the <plot type name>

is among those listed in the final column of Table 7. The ConfigFile, which
was discussed in Section 16, controls the layout and style of the plots. The
various types of plots are discussed below.

20.1 Particle location plots (ktype=1)

The assembly and its particles are drawn to scale as shown in the example
plot of. Fig. 16a (page 96). You can adjust the size of the plot, provide a
length scale bar, etc. by selecting the appropriate options in your ConfigFile
(Section 16).

20.2 Particle graph plots of the void cells (ktype=2)

The assembly domain can be partitioned into numerous polygonal subdo-
mains or void cells. A schematic example of the resulting particle graph is
shown in Fig. 13a (see Satake 1992). The corners (vertices) of each polygon
are the centers of particles, and the sides (edges) are the branch vectors
between particle centers. The resulting particle graph includes only those
particles that are in contact with neighboring particles and that participate

81

ktype ilabel idef inorm ifiltr ialin ielast File name

1
√

NA NA NA NA NA * part posn.tex

2
√

NA NA NA NA NA * graph.tex

3 – NA © NA NA NA * contact forc.tex

4 – NA © √ √
NA * contact stress.tex

10 –
√

NA NA NA
√

* part move.tex

11
√ √

NA NA NA
√

* part rotat.tex

12 –
√

NA NA NA
√

* move rotat.tex

13
√ √ © √ √ √

* cell def.tex

15 –
√ © NA NA

√
* contact move.tex

16 –
√ √ √ √

– * contact def.tex

17 –
√ © NA NA – * contact dforc.tex

18 – – © √ √
– * contact dstres.tex

22 – – © NA NA NA * contact slip.tex

23 – – © NA NA NA * contact dis.tex

ktype Plot type

ilabel Labeling of particles and void cells, Sections 16.10 and 21.1

idef Plotting either the absolute movements or the movements relative to the
assembly deformation, Section 21.2

inorm Plotting of inter-particle movements either tangent or normal to the contact
surface, Section 21.3

ifiltr Applying filters to deformations and stresses, Section 21.4

ialin Plotting of either a filtered magnitude or an alignment relative to the filter,
Section 21.5

ielast Plotting of the separate elastic and inelastic movements/deformations, Sec-
tions 16.15, 17, and 21.6

NA Not applicable

© For circular particles only, not ellipses or ovals

Table 7: Summary of plot types and options

82

(a) Particle graph (b) Non-participating particles
(disregarded)

Figure 13: Particle graph of a 2D assembly

in the load-bearing framework of the assembly. Island, peninsula, and pen-
dant particles are ignored by OvalPlot (Fig. 13b). Figure 16b (page 96)
shows then entire particle graph of an assembly of 1002 particles.

20.3 Contact forces (ktype=3)

The magnitudes of the contact forces are represented by adjusting the thick-
nesses of lines in the particle graph (Fig. 18a, page 98). OvalPlot repre-
sents the contact force f k at the kth contact in the following dimensionless
form:

|fk|/(pD50) (18)

where D50 is the median particle diameter and p is the current mean stress.
The program gives the option of plotting the contributions of either the total
contact force or of the tangential or normal components alone (Section 21.3).
Except when plotting tangential force components, the forces are represented
with black lines. When plotting tangential components, a color scale is
used, in which blue represents a positive tangential force and red represents
a negative tangential force (as in Fig. 18a, page 98). The sign convention
for tangential forces is illustrated in Fig. 14: a positive tangential force will
tend to spin each of the two particles in a counterclockwise direction.

20.4 Contact force contributions to the average stress (ktype=4)

If fk and lk are the contact force and branch vector for the kth contact, then
the magnitude of its contribution to the average assembly stress σ is the
inner product

(fk ⊗ lk) :σ/(D2
50|σ|) (19)

83

Positive tangential contact force

Positive tangential movement

Positive tangential movement

Positive tangential contact force

Figure 14: Sign convention for tangential contact forces and movements.
Positive values are plotted with blue lines; negative values are plotted with
red lines (see Fig. 18a, page 98).

where σ is the current average stress tensor for the entire assembly, and the
tensor norm is defined as |σ| = (σijσij)

1/2. OvalPlot gives the option of
plotting the magnitude of the contribution in eqn. (19) or the “alignment”
of the contribution f k ⊗ lk with the stress σ (Section 21.5). The alignment
will range from −1 to +1, and it is computed as

(fk ⊗ lk) : σ/(|fk ⊗ lk| |σ|) . (20)

When plotting alignments, a red/blue color scale is used to represent neg-
ative/positive values over the range −1 to +1. OvalPlot also allows you
to plot the contribution of the contact to either the current stress σ or to a
“filter” stress Φ (e.g. mean stress, deviatoric stress, etc., see Section 21.4).

20.5 Particle movements (ktype=10)

The particle movements are plotted with arrow vectors (Fig. 17a, page 97).
Each arrow vector is scaled to the magnitude of a particle’s movement, and
the arrow lengths will usually be greatly magnified (see Section 16.17 to
adjust the scaling). The arrows represent the difference in particle locations
between two G-files (Section 17), which are presented as the dimensionless
rate

vk/(D50|D|) , (21)

where D is the assembly’s average rate of deformation (the symmetric part of
the velocity gradient, L) as computed from the change in the deformation
gradient: L = Ḟ · F−1. The tensor norm is defined as |D| = (D:D)1/2.
Particles without contacts are not plotted (see Fig. 13b). OvalPlot gives
the option of plotting the actual movements or the movements relative to
the mean-field deformation (Section 21.2, as has been proposed by Williams
and Nabha 1997). You can also separately plot the elastic and inelastic
movements (Sections 16.15, 17, and 21.6).

84

20.6 Particle rotations (ktype=11)

The particle rotations are plotted by shading each particle in proportion to
its rotation magnitude (Fig. 18b, page 98)

ωk/|D| . (22)

Clockwise rotations are shaded red; counterclockwise rotations are shaded
blue. Particles without contacts are not displayed at all (see Fig. 13b).
OvalPlot gives the option of plotting the actual rotations or the rotations
relative to the mean-field rotation (Section 21.2). You can also separately
plot the elastic and inelastic rotations (Sections 16.15, 17, and 21.6). You
also have the option of plotting both positive and negative rotations, only
positive rotations, or only negative rotations (the latter two cases are useful
if the figures are to appear in a monochrome format). These various options
are presented on the screen while you are running OvalPlot.

20.7 Combined particle movements and rotations (ktype=12)

Both movements and rotations are displayed by showing the particles in
their initial and final positions (shaded and solid, respectively) and with the
initial and displaced branch vectors of all contacts (Fig. 17b, page 97). These
plots can be a bit dense, so you might want to experiment with plotting a
subset of the entire assembly (Section 16.16).

20.8 Void cell deformations (ktype=13)

OvalPlot can compute and plot the deformations within the polygonal
void cells of an assembly (see Section 20.2 for a description of the particle
graph and void cells). These polygonal regions are deformed as the particle
centers move, and the methods for computing these deformations have been
presented by Bagi (1996) and Kuhn (1999). OvalPlot uses two G-files to

compute the average velocity gradient L
i
within each (ith) void cell. Because

it is impossible to display all four components of this tensor, you will instead
display a single value that has been “filtered” with the inner product

L
i
:Φ , (23)

which produces the length of L
i

in the direction of the filter tensor Φ.
Various filters are offered as options (dilation, simple shear, inclined slip,
etc., see Section 21.4). OvalPlot displays the dimensionless rate

L
i
:Φ/(|Di||Φ|) , (24)

85

where L is the velocity gradient, D is the rate of deformation tensor |D|
and |Φ| are tensor norms, and D is the mean-field deformation of the entire
assembly. A tensor norm is defined as

P =
√

PijPij (25)

Figure 18c on page 98 shows the right slip deformations that have oc-
curred in an assembly of 1002 particles. (See Fig. 15, page 89, for illustra-
tions of left slip and right slip deformations.)

You can plot the separate effects of the normal and tangential inter-
particle movements on the void cell deformations (Section 21.3). OvalPlot

also gives the option of plotting either the actual deformations or the defor-
mations relative to the mean-field deformation of the entire assembly (Sec-
tion 21.2). You can separately plot the elastic and inelastic deformations
(Sections 16.15, 17, and 21.6). You also have the option of plotting both
positive and negative values, only positive values, or only negative values
(the latter two cases are useful if the figures are to appear in a monochrome
format). These various options are presented on the screen while you are
running OvalPlot.

20.9 Inter-particle movements at contacts (ktype=15)

OvalPlot can depict the relative movements that occur between pairs of
contacting particles. These relative, inter-particle movements include the
relative translations of the two particles, but not their rotations (future
versions of OvalPlot will include the ability to depict rotation effects
upon the contacts).

You can plot the separate effects of the normal and tangential inter-
particle movements on the void cell deformations (Section 21.3). When
plotting the normal inter-particle movements, positive (blue) movements
tend to reduce the normal contact force. When plotting the tangential
inter-particle movements, positive and negative movements are as shown in
Fig. 14. OvalPlot also gives the option of plotting the actual inter-particle
movements or the movements relative to the mean-field deformation of the
entire assembly (Section 21.2). You can also separately plot the elastic and
inelastic inter-particle movements (Sections 16.15, 17, and 21.6).

20.10 Contributions of inter-particle movements to the av-
erage deformation (ktype=16)

With this plot type, OvalPlot computes an approximate measure of the
contribution that each inter-particle movement makes to the deformation of
the assembly. The method is based on the observation that each contact
is the side (edge) of two polygonal void cells (see Section 20.2 and Fig. 13,

86

page 83). We can compute the deformation that is produced in each of the
two void cells by the single inter-particle movement of the two contacting
particles. This computation uses the methods of Bagi (1996) and Kuhn
(1999), but only a single contact movement is used in the calculation of a
void cell’s deformation. The method provides only a rough estimate of the
contribution of an inter-particle (contact) movement to average deformation
of the assembly. You can apply the same options to these plots as those
discussed in Section 20.8 (ktype=13).

20.11 Contact force rates (ktype=17)

The changes in the contact forces are plotted in a manner similar to that of
plotting the (static) contact forces (ktype=3, Section 20.3). The changes in
the forces are computed by comparing two G-files (Section 17). The changes
are presented as the dimensionless rates

ḟk/(pD50 |D|) , (26)

which is similar to eqn. (18) except for the use of the divisor |D|. The
options that were discussed in Section 20.3 also apply to plots of the contact
force rates.

20.12 Contact force rates contributions to the average stress
rate (ktype=18)

OvalPlot can plot the contributions that changes in the contact forces
make to the change in the average assembly stress. This type of plot is
similar to the one described in Section 20.4, except that force rates, instead
of forces are used in the calculations. The changes in force are computed
from two G-files. The dimensionless rate contributions are computed as

(ḟk ⊗ lk) : σ̇/(D2
50|σ̇|) (27)

Note that the rate in eqn. (27) is only approximate, since the rates l̇k are
not included.

The options that were discussed in Section 20.4 also apply to this plot
type.

20.13 Frictional contact sliding (ktype=22)

This plot type identifies those contacts at which frictional sliding occurs.
Only the branch vectors of sliding contacts are plotted. The thickness of a
branch vector is proportional to the rate of frictional sliding. Red and blue

87

lines correspond to negative and positive sliding (see Fig. 14). Sliding rates
are presented in a dimensionless form as

(sliding rate)/(D50|D|) . (28)

20.14 Energy dissipation at sliding contacts (ktype=23)

Sliding contacts are identified with solid black lines whose thicknesses are
proportional to the rate of energy dissipation at these contacts. The follow-
ing dimensionless rate is used:

(energy dissipation rate)/(pD2
50|D|) . (29)

21 OvalPlot options

OvalPlot offers several options for analyzing and plotting various micro-
quantities. Table 7 (page 82) summarizes the availability of these options for
different plot types and particles shapes. Most of these options are presented
at the command prompt when you run OvalPlot. The ConfigFile also
provides a number of options that control the layout of a plot (Section 16).
The options in Table 7 are discussed below.

21.1 Labels on particles and void cells (ilabel)

Number labels can be placed on particles and void cells. See Section 16.10.

21.2 Actual or relative movements (idef)

You can plot either the actual movements and deformations (idef=0) or the
movements and deformations that are relative to the mean-field deformation
of the entire assembly (idef=1). The option is presented as follows:

Which movements/deformations will be used (idef)?

0) Actual movements

1) Deformation relative to the global (mean-field) movement

21.3 Total, normal, or tangential inter-particle effects (inorm)

You will be prompted with options such as the following:

Which components of inter-particle movements are included (inorm)?

0) total

1) normal

2) tangential

88

��

�� ��

Right slip, � ��Left slip, � ��

��

�� ��

�� ��

�� ��

Figure 15: Left and right slip deformation modes.

The normal and tangential directions are referenced to the contact surfaces.
The directions of positive inter-particle movements and forces are shown in
Fig. 14.

21.4 Filters (ifiltr)

For movements and deformations, you can choose among the following filters
(Φ, see Section 20.8):

Which filter will be used (ifiltr)?

1) the mean-field (global) deformation

2) rotation [0 -1;1 0]

3) dilation [1 0;0 1]

4) right slip deformation

5) left slip deformation

6) shear [0 1;1 0]

7) your filter (to be given as input)

8) simple shear [0 1;0 0]

9) simple shear [0 0;1 0]

If you choose right slip or left slip deformations (items 4 and 5), you will be
prompted for the slip angle β (see Fig. 15). If you choose item 7, “your filter,”
you will be prompted for the components of Φ in the following order: φ11,
φ12, φ21, φ22. Enter all four values on a single line, with the items separated
with commas or spaces.

With forces or stresses, you can choose among the following filters (Φ,
see Section 20.4):

Which filter will be used (ifiltr)?

1) the average stress stress within the assembly

2) un-symmetric stress [0 1;-1 0]

3) mean stress [1 0; 0 1]

89

4) right slip shearing

5) left slip shearing

6) pure shear stress [0 1; 1 0]

7) your filter (to be given as input)

Items 4 and 5 refer to shearing stresses in the manner shown in Fig. 15.

21.5 Magnitudes or alignments (ialin)

When a filter Φ is being applied to a tensor quantity, say A, you can either
plot the inner product magnitude A : Φ = AijΦij or the alignment of the
two tensors, A : Φ/(|A||Φ|). You will be offered a choice with the following
prompt:

Magnitude or alignment (ialin)?

0) magnitude, A:B

1) alignment, A:B/(|A| |B|)

21.6 Elastic and inelastic movements (ielast)

This option was discussed in Sections 16.15 and 17. The option is given
in the ConfigFile, and it requires three G-files as input. If the ConfigFile
includes the input value iplast=1, then you will be prompted with the
following choices:

Which of the following do you want to plot (ielast)?

1) elastic

2) inelastic

3) total

22 Change Log

This section documents the changes that have been made between various
version of Oval and OvalPlot.

22.1 Oval–0.4.0 to Oval–0.6.0

Added features:

• Added the 3D non-spherical ovoid particle (Sections 9.1.1, 9.2.5, 10.7.2).

• Added the “krotat” option of either allowing or preventing particle
rotations and/or particle translations (Section 8.2.4).

90

• Converted to list-directed input for D-files. This allows for much less
restrictive input files (for example, input files created with spread-
sheets).

• Added more information printed to the screen at the start of a run.

• Added the option of automatically computing the mass and/or the
time step to optimize performance (Sections 8.1.25).

• Added the option of nloop1 into the input RunFile (Section 8.1.13).

Enhancements:

• Improved the near-neighbor search algorithm for ellipse, oval, and
ovoid particles. These changes should reduce the search time by up to
a factor of 10.

• Added several hundreds of comments to the source code.

Bug fixes:

• With 3D assemblies, print header line in B-files.

• Corrected output value of xloops in 3D B-files.

• Moved the code for repositioning ovals within the subroutines “integ1”
and “integ2”. This change will be necessary for handling non-periodic
boundaries

• Previously, the particles were placed back into the main periodic cell in
subroutin “lister” whenever they drifted outside the main cell. What
seemed like a nice act of basic housekeeping actually produces prob-
lems with OvalPlot. I eliminated this feature.

• Corrected an error in the handling of periodic boundaries in the near-
neighbor search subroutine “lister”.

22.2 Oval–0.6.0 to Oval–0.6.1

Added features:

• Added information contained in the A-file: fabric tensor A; fabric
tensor of strong contacts As; proportion of strong contacts; numbers
of edges, faces, and vertices in the particle graph, etc. (Section 10.1).

Enhancements:

• Changed the code for single-precision (4-byte) to double-precision (8-
byte) for all floating point numbers.

91

• Changed the labeling scheme for C?, Fa? files (Sections 8.2.7, 10.5,
and Table 3)

• Changed the names of F-files from F1<. . .> to Fa<. . .>, etc. (Sec-
tions 10.6 and 10.7)

Bug fixes:

• Fixed bug that prevented the creation of F-files for non-spherical par-
ticles.

22.3 Oval–0.6.1 to Oval–0.6.2

Added features:

• F-files now give output of the ortientation angles of the particles.

Enhancements:

• Increase the precision of output of some fields in F-files.

• Increased the precision of contact inquiry for ovoids.

Bug fixes:

• Fixed calculation of the average overlap among particles.

22.4 Oval–0.6.2 to Oval–0.6.3

Bug fixes:

• Changes to contact inquiry algorithm for ovoids.

22.5 Oval–0.6.3 to Oval–0.6.4

Enhancements:

• Add more information about the simulation parameters in the “Fa”-
files (the beta angle, fn, ft, frict, and stress).

• Changed all angles in the “Fb”-files to radians (γ1, γ2, and θ).

• Changes to screen output during an Oval run to accomodate larger
simulations.

Bug fixes:

• Slight change in algorithm for contact damping.

92

22.6 Oval–0.6.4 to Oval–0.6.5

Enhancements:

• Increased precision (digits) in the “Fa”-files.

• Improved stability of the ovoid contact detection algorithm.

22.7 Oval–0.6.5 to Oval–0.6.8

Enhancements:

• Report the effective void ratio in the A-files.

• Added most of the B-file information to the A-files.

• Added the possibility of U- nad V-files.

Bug fixes:

• Corrected error in defining kshape when reading a dump file.

• Limit the number of error message that can be printed to the errfile.
Large numbers of error could previously fill a file system.

• Corrected an error in overflows of chi1 and chi2.

22.8 Oval–0.6.8 to Oval–0.6.10

Enhancements:

• Added ivers to extend RunFiles.

• Added Hertz-Mindlin contact.

• Added flexible boundary and several forms of rigid boundaries.

• Added the option iexact for exactly integrating the kinetics of ovoid
particles

• Added external code for generating random numbers.

• Added information to A-files: the number of sliding contacts, etc.

93

22.9 OvalPlot–0.2.0 to OvalPlot–0.4.0

Added features:

• Added the option of printing only positive or negative values when
ktype=11 or ktype=13.

• Added the configuration value sclwid to the ConfigFile, which allows
adjusting the width of the intensity scale.

Bug fixes:

• Changed the type of parameter “mfirst” to integer*4.

• Changed plots of contact sliding (ktype=22) so that non-sliding con-
tacts are not plotted (they previously appeared as faint pink lines).

22.10 OvalPlot–0.4.0 to OvalPlot–0.4.2

Enhancements:

• Change from L to D to measure certain rates.

23 References

Bagi, K. (1996). “Stress and strain in granular assemblies.” Mech. of Ma-

terials, 22(3), 165–177.

Bardet, J. P. (1994). “Observations on the effects of particle rotations on
the failure of idealized granular materials.” Mech. of Materials, 18(2),
159–182.

Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model
for granular assemblies.” Géotechnique, 29(1), 47–65.

Kuhn, M. R. (1999). “Structured deformation in granular materials.”
Mech. of Materials, 31(6), 407–429.

Murakami, A., Sakaguchi, H., and Hasegawa, T. (1997). “Dislocation,
vortex and couple stress in the formation of shear bands under trap-
door problems.” Soils and Found., Jap. Geotech. Soc., 37(1), 123–135.

Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An

Introduction. Springer-Verlag, New York.

94

Satake, M. (1982). “Fabric tensor in granular materials.” Proc. IUTAM

Symp. on Deformation and Failure of Granular Materials, P. A. Ver-
meer and H. J. Luger, eds., A.A. Balkema, Rotterdam, 63–68.

Satake, M. (1992). “A discrete-mechanical approach to granular materi-
als.” Int. J. Engng. Sci., 30(10), 1525–1533.

Satake, M. (1993). “New formulation of graph-theoretical approach in the
mechanics of granular materials.” Mech. of Materials, 16, 65–72.

Thornton, C. and Randall, C. W. (1988). “Applications of theoretical con-
tact mechanics to solid particle system simulation.” Micromechanics

of Granular Materials, M. Satake and J. Jenkins, eds., Elsevier Science
Pub. B.V., Amsterdam, The Netherlands, 133–142.

Williams, J. R. and Nabha, R. (1997). “Coherent vortex structures in
deforming granular materials.” Mech. Cohesive-Frictional Mat., 2(3),
223–236.

95

(a) Particle positions, oval particles
(ktype=1, Section 20.1).

(b) Particle graph (ktype=2, Sec-
tion 20.2).

Figure 16: Example plots with an assembly of 1002 particles.

96

(a) Particle movements (ktype=10, Section 20.5). Two assemblies are tiled side-
by-side.

(b) Particle movements and rotations (ktype=12, Section 20.7). A
subset of the entire assembly is shown.

Figure 17: More example plots with an assembly of 1002 particles.

97

(a) Tangential contact forces (ktype=3). (b) Particle rotations (ktype=11, Sec-
tion 20.6).

(c) Right slip deformations (ktype=13,
Section 20.8).

Figure 18: More example plots with an assembly of 1002 particles.

98

