DIFFERENT ROLLING MEASURES FOR GRANULAR ASSEMBLIES

Katalin Bagi

Hungarian Academy of Sciences

University of Portland

ROLLING

particle translations & rotations:

- ⇒ contact deformation & sliding
- ⇒ rigid-body-like displacements
- \Rightarrow rolling

in general case:

ALL OF THEM, AT THE SAME TIME

This presentation:

- a) What to mean by 'rolling'? (3 different proposals)
- b) 'Rolling curl': assigned to the particles

how they behave in numerical simulations

Basic assumptions:

perfectly rigid particles contacts: infinitesimally small; deformable (\Leftarrow like in most DEM models) incremental approach purely kinematical analysis

Rolling measure # 1.:

[analysis of relative rotations]

"The motion when the particles have a relative rotation about a common tangential axis"

about the contact normal:

$$d\mathbf{\theta}^{rel, twist} = (d\mathbf{\theta}^{rel} \cdot \mathbf{n})\mathbf{n}$$

about a tangential axis

$$d\mathbf{\theta}^{roll,1} = d\mathbf{\theta}^{rel} - (d\mathbf{\theta}^{rel} \cdot \mathbf{n})\mathbf{n}$$

OBJECTIVE!

((Objectivity:

observers having different locations & different velocities: experience the same rolling in the contact

Rolling measure # 2.:

[analysis of the average translation of the contact]

"The motion that changes the distance of the contact point from the branch vector"

Contact point:

Displacements:

Average translation of the contact point:

$$d\mathbf{u}^{avr} = \frac{1}{2} \left[d\mathbf{u}^{pc} + d\mathbf{u}^{qc} \right] =$$

$$= \frac{1}{2} \left[(d\mathbf{u}^{p} + d\mathbf{\theta}^{p} \times \mathbf{r}^{p}) + (d\mathbf{u}^{q} + d\mathbf{\theta}^{q} \times \mathbf{r}^{q}) \right]$$

 $d\mathbf{u}^{avr,\perp}$ rigid-body-like

rolling:

OBJECTIVE!

$$d\mathbf{u}^{roll,2} = \frac{1}{2} \Big[(d\mathbf{\theta}^{p} \times \boldsymbol{\lambda}) (\mathbf{r}^{p} \cdot \boldsymbol{\lambda}) + (d\mathbf{\theta}^{q} \times \boldsymbol{\lambda}) (\mathbf{r}^{q} \cdot \boldsymbol{\lambda}) - \frac{((\mathbf{r}^{p} + \mathbf{r}^{q}) \cdot \boldsymbol{\lambda})}{((\mathbf{r}^{p} - \mathbf{r}^{q}) \cdot \boldsymbol{\lambda})} (d\mathbf{u}^{q} - d\mathbf{u}^{p}) \Big]$$

Rolling measure # 2.:

[analysis of the average translation of the contact]

Example 1:

Two equal circles that do not translate: $R^p = R^q := R$, $d\theta^p = -d\theta^q$, $|d\theta^p| = |d\theta^p| := d\theta$:

Before displacements:

After displacements:

Rolling:

$$\left| d\mathbf{u}^{roll,2} \right| = \left| \frac{1}{2} \left[(d\mathbf{\theta}^p \times \mathbf{r}^p) + (d\mathbf{\theta}^q \times \mathbf{r}^q) \right] \right| = R \ d\theta$$

Example 2:

Rigid-body motion of a pair of arbitrary particles: $d\theta^q = d\theta^p$, $d\mathbf{u}^q = d\mathbf{u}^p + d\theta^p \times \mathbf{r}^p$

Before displacements:

After displacements:

Rolling:

$$\left| d\mathbf{u}^{roll,2} \right| = 0$$

Rolling measure # 3.: [analysis of the shift of the contact point]

"The motion that changes the location of the contact point on the particle surface"

Before displacements:

(Local surface geometry \mathbf{K}^p , \mathbf{K}^q , \mathbf{n})

After displacements:

Average shift of contact point:

$$d\mathbf{u}^{roll,3} = -(\mathbf{K}^p + \mathbf{K}^q)^{-1} \left[(d\mathbf{\theta}^q - d\mathbf{\theta}^p) \times \mathbf{n} + \frac{1}{2} (\mathbf{K}^p - \mathbf{K}^q) d\overline{\mathbf{u}}^{def} \right]$$

OBJECTIVE!

Rolling measure # 3.:

[analysis of the shift of the contact point]

Example 1:

Two equal circles that do not translate: $R^p = R^q := R$, $d\theta^p = -d\theta^q$, $|d\theta^p| = |d\theta^p| := d\theta$:

Before displacements:

Rolling:

$$\left| d\mathbf{u}^{roll,3} \right| = \left| \frac{1}{2} \left[d\mathbf{u}^{shift,pc} + d\mathbf{u}^{shift,qc} \right] \right| = R \ d\theta$$

Example 2:

Rigid-body motion of a pair of arbitrary particles: $d\theta^q = d\theta^p$, $d\mathbf{u}^q = d\mathbf{u}^p + d\theta^p \times \mathbf{r}^p$

Before displacements:

After displacements:

Rolling:

$$\left| d\mathbf{u}^{roll,3} \right| = 0$$

Rolling measures: Numerical simulation results

The simulations: Biaxial/Triaxial tests

Circles/spheres, ovals/ovoids

2D: 10816 **3D**: 4096

contacts: linear

periodic boundaries

The simulation results:

• Correlations between Type 1 / Type 2 / Type 3 measures: > 95%

Rolling measures: Numerical simulation results

The simulation results:

Pattern # 1:

Dilatation of voids:

Contact rolling:

- deforming strips with rolling
- quiet regions between them

Rolling measures: Numerical simulation results

The simulation results:

• <u>Pattern # 2:</u>

- Rolling vectors around an individual particle: typically, either all of them clockwise, or all of them counter-clockwise
- GEAR-LIKE PATTERN
- observed:

at all particle shapes at all strain levels before shear bands and also within shear bands

(see later in 3D)

Rolling curl

 $\mathsf{contact} \Rightarrow \mathsf{particle}$

Equivalent continuum:

Define a vector field:

The rolling curl:

$$d\overline{\mathbf{p}}^{p} = \frac{1}{V^{p}} \iint_{(S^{p})} \mathbf{n}(\mathbf{x}^{S}) \times d\mathbf{u}^{roll}(\mathbf{x}^{S}) dS$$

Physical meaning:

≈ that part of the particle rotation which leads to rolling

Rolling curl: Simulation results

Correlations between particle curls

Discrete distance between two grains:

d = 2

particles at distance 1, 2, 3

Correlations between rolling curls of particles at distance 1, 2, 3, ... were analyzed in biaxial/triaxial tests circles/spheres, ovals/ovoids

Rolling curl: Simulation results

Correlations between particle curls

Zero strain level:	Distance d	Circles (2D)	Ovals (2D)	Spheres (3D)	Ovoids (3D)
20,00,000	0	1.00	1.00	1.00	1.00
	1	-0.55	-0.29	-0.37	-0.21
	2	0.18	0.02	0.08	0.02
	3	-0.04	0.01	-0.01	0.00
	4	0.01	0.00	0.00	0.00
	5	0	0	0	0
Peak stress level:	Distance d	Circles (2D)	Ovals (2D)	Spheres (3D)	Ovoids (3D)
	0	1.00	1.00	1.00	1.00
	1	-0.63	-0.51	-0.42	-0.33
	2	0.33	0.20	0.14	0.09
	3	-0.13	-0.06	-0.03	-0.01
	4	0.05	0.02	0.00	0.00
	5	-0.01	-0.00	0	0
	6	0.01	0.00	0	0

Physical meaning of the results:

FUTURE RESEARCH

HOW TO USE IT IN A CONSTITUTIVE THEORY?

Total deformation of an assembly:

- Elastic energy (elastic particle deformations)
- □ Dissipated energy (contact sliding etc.)
- ← ROLLING

SUMMARY

• 3 different objective measures for contact rolling

 \Rightarrow simulation results: very large correlations characteristic spatial patterns

Rolling curl: assigned to the particles

⇒ simulation results: gear-like pattern

• Idea of future research

THANKS!

