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Abstract

The paper considers possible frameworks
for the transition from the micro-scale
behavior of granular materials to the mod-
eling of larger scale problems. The paper
reviews direct experimental evidence that
granular materials deviate from classical
continuum assumptions at several length
scales. Granular materials also exhibit
other behaviors that are characteristic of
scale-dependent materials: heterogeneity,
strength that depends on specimen size,
and boundary effects.

Three generalized, non-classical ap-
proaches have been used to bridge the
micro-to-macro length scales: Cosserat,
gradient-dependent, and non-local, integral
models. One aspect of Cosserat models
appears to be inconsistent with experimen-
tally observed micro-scale behavior. The
gradient-dependent approach, however,
can model certain aspects of behavior
when the deformation is non-uniform,
and it can resolve some gross features of
deformation patterning. Non-local, integral
models can also be guided by experimental
observations gathered from computer
simulations. These experiments suggest
that the integral’s kernel is non-symmetric.
The paper demonstrates how a simple,
symmetric non-local integral model can be
used to derive one of the length scales of
granular materials.

Keywords: Granular material, mesome-
chanics, microstructure, Cosserat mod-
els, non-local models, gradient-dependent,
length scale.

1. Introduction

In this paper we explore the scale-
dependent behavior of dry cohesionless
granular materials and its relation to
some generalized continuum frameworks.
Although many other materials are scale-
dependent, the elemental mechanical units
of granular materials are usually of mi-
croscopic size or larger, so that a number
of experimental means can be applied to
directly observe their micro-level behav-
ior. More importantly, individual grains
interact with each other in a relatively
simple manner. With the exception of
colloidal particles, long-range interactions
are minimal and the interactions among
grains occur primarily between pairs that
are touching, with the contact forces
consistent with established principles of
contact mechanics. This relative simplicity
allows the use of numerical, computer
simulations to directly explore the micro-
level and scale-dependent behavior in large
assembles of many hundreds or thousands
of grains, albeit numerical grains [1]. Such
simulations can capture the micro-level
behavior of granular materials by modeling
the individual grains in a large assembly,
and they have become an important means
of constructing and testing continuum
descriptions of macro-level behavior. The
results of some recent simulations have
drawn increasing attention toward general-
ized, non-classical continuum descriptions
of granular materials, and some of these
descriptions are explored in the paper.

The outline of the paper is as follows.
In Section 2, we briefly catalog many of
the scale-dependent phenomena that have
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been observed in granular materials and
provide original experimental illustration
of several such phenomena. In Section 3,
we review three generalized, non-classical
constitutive frameworks for incorporating
microstructure into macro-level continuum
descriptions of granular materials. The
discussion is informed by recent experi-
mental results that support two of the three
frameworks. Section 4 explores one of the
two approaches: a continuum description
of non-local, integral type. Experimental
results are used to calculate one of the
length scales of granular materials.

2. Scale-dependent phenomena

In this section, we catalog scale-dependent
phenomena that have been observed in
granular materials—phenomena that are
observed at one scale (or level of magni-
fication) but are absent at other scales—
although we exclude phenomena that are of
large, geologic scale. The observations are
from both two and three dimensional phys-
ical experiments and computer simulations.

� At the smallest meaningful scale, gran-
ular materials are composed of two el-
emental units: grains and the voids be-
tween them. The topological associa-
tions among these units in two dimen-
sions can be described with a particle
graph or, its dual, the void graph [2].
Dual systems can also be applied in
three dimensions to model packing ge-
ometry [3], and 3D topological char-
acteristics can be described by gen-
eralized Satake-graphs. Although a
granular material may appear uniform
at scales that encompass several thou-
sands of particles, the elemental ar-
rangement is rarely uniform or lattice-
like. The graphs are highly complex
and irregular, with no two particles
having an identical neighborhood or
micro-stiffness [4, 5]. At this micro-
scale, we can think of the micro-stress
as the average stress within individ-
ual particles, but this micro-stress may
vary radically from one particle to an-
other.� At scales of a hundred or more par-
ticles, the particle displacements and
rotations in 2D simulations can be
quite irregular. As an example, Fig. 1
shows results from a computer simula-
tion of 100 circular disks. The arrows
show the motions of individual disks

while the assembly was being com-
pressed vertically and expanded hor-
izontally. The figure reveals several
groups of particles, with the particles
in each group moving in conformance
as micro-scale clusters.

Figure 1: Clustering within an assembly of
100 granules

� In 2D physical and numerical experi-
ments with as few as a hundred grains,
stress is not borne uniformly by the
grains, but is instead supported by ir-
regular, serpentine chains of particles
that are roughly aligned with the ma-
jor principal stress [6, 7]. The inten-
sity of stress is, therefore, highly local-
ized within a granular material, and the
concept of an average meso-stress may
only have meaning at length scales of,
perhaps, several or more particle diam-
eters. Some statistical measures have
been developed for describing the dis-
tribution of the disparate contact forces
among particles [8, 9], but their spa-
tial distribution has not yet been ade-
quately addressed.� At scales that encompass many hun-
dreds or a few thousands of 2D par-
ticles, a number of localized defor-
mation structures become prevalent:
vortex-like circulation cells [10], mi-
crobands of shearing deforming [11],
and dilation clusters. An example of
dilation clustering is shown in Fig. 2,
which presents the micro-level distri-
bution of dilation rates within a dense
two-dimensional assembly of 4008 ir-
regularly packed circular disks. In this
computer simulation, the entire assem-
bly was deformed in simple shear un-



der constant vertical stress. Only pos-
itive volume changes (dilation) can be
represented in this monochrome plot,
but even while the entire material is
intensely dilatant, about 38% of its
volume is compressing. The dilation
is concentrated within numerous clus-
ters, each containing a few tens of par-
ticles.
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Figure 2: Dilation clustering in an assem-
bly of 4008 granules

� Shear bands are observed within as-
semblies of several thousand or more
particles in 2D experiments. When
viewed at a larger scale, these bands
may appear as discontinuity surfaces,
but in carefully observed physical and
numerical experiments on 2D and 3D
materials, shear bands have measur-
able thicknesses of between 8 and 20
particle diameters [12, 13]. Within
the bands, meso-sized clusters of par-
ticles can rotate in circulation pat-
terns in either clockwise or counter-
clockwise motions (Fig. 3), although
the dominant direction of cluster rota-
tion is consistent with the direction of
shear. Once formed, shear bands are
stationary and persistent on a macro-
scale, although micro-scale studies re-
veal that shear bands may locally shift
and change in thickness over time [14].

Besides these examples of the scale-
dependent patterning of stress and deforma-
tion, granular materials also exhibit certain

Figure 3: Particle velocities in a 2D assem-
bly of disks. Circulation patterns are visible
within a shear band

behaviors that are associated with scale de-
pendence:

� Strength heterogeneity: The hetero-
geneity of granular materials is one
of their distinguishing characteristics,
and material non-uniformity is present
at every scale. Bagi et al. [15]
found that the randomness of micro-
geometry in granular rocks leads to a
significant scatter in fracture strength.
The variation of strength in cohesion-
less granular materials is illustrated in
Fig. 4, which shows the results of sim-
ulated shear tests on 2D samples of
1002 densely packed circular disks.
One hundred assemblies were com-
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Figure 4: Variation in the shearing behav-
ior of 100 specimens of 2D assemblies of
disks.

pacted from initially sparse arrange-
ments of the same particle set, so



that the compacted assemblies had the
same solids fraction and the same par-
ticle sizes. Figure 4 shows consid-
erable scatter in strength even un-
der these ideal conditions. At small
scales, as in the assembly represented
in Fig. 1, strength variations are, of
course, the natural consequence of
an irregular particle topology (micro-
fabric). At larger scales, variations can
result from differences in the material
macro-fabric, as measured by void ra-
tio or by distributions in particle size
or contact orientations.� Size effect on strength: Baz̆ant [16]
has presented a review of the effects
of specimen size upon strength, show-
ing that for most materials—metallic,
ceramic, and cemented—strength in-
creases with diminishing specimen
size. An opposite trend might occur
in granular materials. Using methods
identical to those described in the pre-
vious paragraph, two sets of granu-
lar assemblies were constructed: one
set with 200 circular disks per assem-
bly, the other set with 1002 disks per
assembly. The two sets had nearly
the same macro-fabric, as was evident
in the distributions of particle sizes,
initial mean stresses, void ratios, and
coordination numbers. Although the
scatter in strengths was greater in the
smaller assemblies, the strength was,
on average, smaller than in the larger
assemblies. The mobilized friction an-
gle was about 25.44 M for the assem-
blies of 200 particles and about 25.94 M
in the 1002-particle assemblies (re-
sults from the latter set were shown
in Fig. 4). Although the differences
were slight, the different coordination
numbers and mean stresses of the two
sets may have produced the different
strengths, and further investigation is
required.� Boundary effects: Edelen [17] demon-
strated how boundary effects, and in
particular the surface tension at fluid
interfaces, can result from the non-
local nature of particle (i.e. molecu-
lar) interactions. A solid grain only
interacts directly with the neighbor-
ing grains that it touches, but differ-
ent phenomena can be observed near
the boundaries of granular assemblies.
Onda [18] has shown, for example,
that the micro-mechanisms that trigger
granular avalanching at a free surface

are different from the mechanisms that
predominate within a granular mate-
rial’s interior. At a rigid platen sur-
face, particle motions are also influ-
enced in a manner that is not present
further from the surface.

3. Generalized continuum frameworks

We briefly consider three generalized, non-
classical continuum models: Cosserat mod-
els, gradient-dependent models, and non-
local, integral-type models. Each of
these constitutive models introduce materi-
als properties with dimensional units other
than those of stress, so that a characteris-
tic length is embedded within their descrip-
tions. This length can serve as a bridge be-
tween behaviors at different scales. As an
example, Cosserat descriptions have been
proposed for granular materials and have
been incorporated into finite element mod-
els [19, 20]. When viewed at a scale of
several thousand times the characteristic
length, a shear band appears as a displace-
ment discontinuity, but when considered
at a second, smaller scale, these Cosserat
models can resolve deformation contours
within a band. A continuum model will,
however, require more than a single char-
acteristic length to resolve phenomena that
occur at more than two scales (for example,
to resolve the even finer detail of microband
patterning).

Although Cosserat models can be calibrated
to reproduce the observed characteristics
of shear bands, there are reasons to sus-
pect whether they truly capture the micro-
behavior of granular materials at scales of
several particle diameters. In the Cosserat
framework, rotations and displacements are
treated as independent fields, so that the ro-
tation of a material point, perhaps a single
grain or cluster, can differ from the mean
rotation of its neighborhood (the skew sym-
metric part of the macro-scale velocity gra-
dient). Recent experiments have shown,
however, that the mean particle rotation
is very nearly equal to the mean rotation
of the particle neighborhood. This evi-
dence comes from studies of 2D assem-
blies in which the macro-level deforma-
tion was either spatially uniform [21] or
spatially nonuniform [14]. Other evidence
has shown that particle rotations are highly
variable, and in 2D studies, the direction
of rotation can alternate from clockwise
to counter-clockwise as observation moves
from one neighboring particle to another,
or from one cluster to another. Within a



shear band, the rotation direction of a sin-
gle particle can also change with time, even
when the loading is proportional and mono-
tonic [22]. It may be difficult, therefore, to
resolve such strong micro-level fluctuations
as the projection of a continuum field onto
a micro-neighborhood, even a field that in-
tentionally models micro-rotations. Further
investigation of this matter is certainly re-
quired.

In a recent experimental study, the shearing
behavior of granular materials was found
to depend on the first and second gradi-
ents of shearing strain [14]. This depen-
dence is subtle and was only resolved by
averaging the behaviors of numerous ma-
terial meso-samples that were subjected to
the same non-uniform deformation field.
The dependence of shearing stress on the
first strain gradient was altogether absent at
small strains, but the effect of the first gra-
dient became quite strong during the sub-
sequent plastic deformation. The effect of
the second strain gradient was present at
both small and large strains, although its
effect at small strains was opposite that at
larger strains. The separate influence of
the two strain gradients suggests that at
least two different characteristic lengths can
be included in a gradient-dependent con-
tinuum description, so that material behav-
ior can be resolved at three scales: macro,
meso, and micro. The study showed that
the measured effects of the two strain gra-
dients were consistent with certain features
of both shear band and microband defor-
mation structures—localized deformation
patterns that are apparent at two differ-
ent scales. We should note that the gra-
dient dependence was measured by aver-
aging multiple meso-sized samples with-
out regard to variations among the sam-
ples. These micro-fluctuations are the likely
cause of spatial irregularities in the pattern-
ing of force chains, microband deforma-
tions, and shear bands.

A number of explicitly non-local, integral-
type models have been proposed as a means
of including a characteristic length within
a continuum description of material behav-
ior [23, 24, 25]. In this approach, the stress
at a material point N or its neighborhood is
expressed as a functional of the strain in a
finite neighborhood O , usually as an aver-
aged strain P . The strain P in the surround-
ing region O is averaged with a weighting
kernel Q :

PSR�NUTWVYX-Z[Q\R�N^]_Na`bT�PSR;Na`bTdcfehg (1)

where the kernel Q is either a scalar or a
fourth order tensor. If the kernel Q is re-
stricted to the scalar Dirac operator i , then
the strain P is simply the local strain P . In
the usual approach, however, the kernel Q
is assumed to be smooth and centrally sym-
metric, such that Q\R�jkT = Q\R]ljkT . A cen-
trally symmetric kernel can take the form of
a scalar function mnR�o Np]qN ` oET , where the ar-
gument is an appropriate norm of the vectorNr]\N ` (e. g., the objective Euclidean norm).
With this restriction, the strain P can be ex-
panded as a series in P and its even-order
derivatives, showing that second gradient
models are but special instances of this re-
stricted integral form [26, 25]. The restric-
tion excludes the possible effect of the first
and other odd-order strain gradients on the
material behavior. The experimentally mea-
sured effect of the first strain gradient in
granular materials suggests, however, that
the condition of central symmetry on Q is
unduly restrictive.

We briefly consider a kernel composed of
symmetric and anti-symmetric parts, withQ = Qtsvuxw + Qzy){�|~} , as a means of captur-
ing the effects of both even and odd ordered
strain gradients. The anti-symmetric partQzy){|v} introduces certain difficulties, notably
that its integration over a symmetric, spher-
ical region O is identically zero. If regionO is allowed to be non-spherical, then we
can do one of the following: 1) assign a
preferred orientation to O to capture aniso-
tropy in that direction, or 2) apply Q�y){�|~} to
an objective and scalar function of the strainPSR;N ` T . As an example of the latter, we could
multiply an anti-symmetric Q by a function
of the strain invariants. Marcher and Ver-
meer [27] present a non-local elasto-plastic
model in which the volumetric strain rate is
averaged with a symmetric kernel,

X�Z�m sAuHw R�o N^]_Na`�oLT������ R���`/Tdc�ehg (2)

where the scalar valued m�svuxw is a symmetric
error function, as will be detailed further be-
low. This approach can be extended to non-
symmetric forms, such as the following:�� X Z��v���~� m sAuHw R�o N�]_N ` oLT� �� �� R�N ` TS���� �� R]�N ` T+�

��m y){|v} R�o N^]_N ` oETo��� �� R�N ` T�]��� �� R]�N ` T�oS��cfe (3)

which contains the symmetric (even)



and anti-symmetric (odd) scalar valued
functions mksvuxw and m�y){�|v} . The region O����) 
is a hemispherical region, but because
we integrate the absolute value of the
anti-symmetric part, the orientation of O����) 
is of no consequence. Only the integrated
magnitude of the anti-symmetric spatial
variations in �� �� are included, so that an
equal gradient of �� �� in any direction will
have an equal effect on the non-local
response. Integrals of the form (3) could
also be applied to other strain invariants or
to functions of several invariants.

4. A characteristic length

We will now consider only the symmet-
ric part of Eq. (3) and compute one of the
characteristic lengths for granular materi-
als. The calculation will be based upon
the experimental results of Kuhn [14], who
measured the effect of the second strain gra-
dient on the low-strain shear modulus ¡ in
a 2D assembly of circular disks. The mod-
ulus was found to depend upon the second
derivative of the shear strain ¢ in the follow-
ing manner:

¡£V¤¡¦¥��¨§   ¢ ` `¢ g (4)

where the moduli ¡t¥ and §   were experi-
mentally measured. In the experiments, the
shear strain ¢ varied in a single coordinate
direction �   , and the differentiation ¢ ` ` in
Eq. (4) is taken in that direction. We will
consider a 2D material region within which
the shear strain varies in a quadratic man-
ner, ¢^V©¢ª¥�� �� ¢ ` `¥ �    g (5)

and then use Eq. (1) to find an averaged
strain ¢ within the region. To be consis-
tent with the experimental measurements,
the product of the non-local ¢ and the base
modulus ¡¦¥ should equal the product of the
local ¢ª¥ and the corrected modulus ¡ in
Eq. (4), or

¢«V©¢f¥�� §  ¡¦¥ ¢ ` `¥¬ (6)

As the choice of an averaging kernel, we
return to the symmetric form suggested by
Marcher and Vermeer [27] as a symmetric
version of Eq. (3):

¢®V �¯ X-Z �°2± ² ¢�R�� `  Td³�´�µ~¶ ·�´ª·I¸A¶ ��¹�º � c�e ¬ (7)

In this form,
°

is the characteristic length
that we will calculate and

¯
is the value of

the integral when ¢¤V �
(
¯ V °�± ²

for a
circular two dimensional region of infinite
extent).

Substituting Eq. (5) into Eq. (7) gives
the following value of ¢ :

¢^V©¢ª¥�� °   ¢ ` `¥�»�¼½¬ (8)

Comparing Eqs. (8) and (6) we see that
°

is
directly related to the experimentally mea-
sured values of §   and ¡¾¥ :° V ��¿ §   » ¡¾¥ ¬ (9)

For experiments on 2D assemblies, the
ratio §   » ¡¦¥ was found to range from 0.55
to 0.87 À  Á+Â , where À Á+Â is the mean particle
diameter. These values yield a length scale°

of between 1.5 À Á+Â and 1.9 À Á+Â . With
the particular error function in Eq. (7),
about 63% of the stress at a material point
is attributed to the deformation within a
circular region of radius

°
centered at the

point. The small computed values of
°

suggest that the measured dependence of
shear stress upon the second strain gradient
at low strains will only affect the material
behavior at small distances. This result
is consistent with the work of Chang and
Gao [28] who derived similar values of
the ratio §   » ¡¾¥ from the mechanics of a
simple two-particle system. Even at such
distances, however, the particular length
scale

°
may be associated, however, with

the microband deformation patterning that
occurs at very low strain, since microbands
have a spatial periodicity of only 3.5 À Á+Â to
8 À Á+Â .
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