Micro-Mechanics of Granular Flow at Large Strains

Matthew R. Kuhn
University of Portland

Engineering Mechanics Institute Inaugural International Conference *Minneapolis, Minnesota*

May 18-22, 2008

Granular "genre":

Dense packings Slow loading

- Reduced stiffness
- Softening
- Localized deformation
- Non-coaxiality, $d\sigma \leftrightarrow d\epsilon$
- Gradient effects, $d\sigma \leftrightarrow \nabla_x \epsilon$

Granular "genre":

Dense packings Slow loading

- Reduced stiffness
- Softening
- Localized deformation
- lacktriangle Non-coaxiality, $d\sigma \leftrightarrow d\epsilon$
- Gradient effects, $d\sigma \leftrightarrow \nabla_{\mathsf{X}} \epsilon$

Granular "genre":

Dense packings Slow loading

- Reduced stiffness
- Softening
- Localized deformation
- lacktriangle Non-coaxiality, $d\sigma \leftrightarrow d\epsilon$
- Gradient effects, $d\sigma \leftrightarrow \nabla_{\mathsf{X}} \epsilon$

Granular "genre":

Dense packings Slow loading

- Reduced stiffness
- Softening
- Localized deformation
- lacktriangle Non-coaxiality, $d\sigma \leftrightarrow d\epsilon$
- Gradient effects, $d\sigma \leftrightarrow \nabla_{\mathsf{X}} \epsilon$

Three views of large-strain micro-mechanics

Three approaches to micro-mechanics:

- Discrete contact approach
- Contact distribution approach
- Objective stiffness approach

Focus on

- Incremental behavior
- "Mechanical" vs. "Geometric" effects
- Large vs. small strains

Outline

- Micro-view 1: Discrete contact approach
 - Average stress
 - Example
- Micro-view 2: Contact distribution approach
- Micro-view 3: Discrete stiffness approach

Calculation of average stress

$$oldsymbol{\sigma} \quad = \quad rac{1}{V} \sum \mathsf{I} \otimes \mathsf{f}$$

$$oldsymbol{\sigma} \quad = \quad rac{1}{V} \sum \mathsf{I} \otimes \mathsf{f}$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum I \otimes df}_{Mechanical}$$

$$\underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes\mathbf{f}}_{\text{Geometric}}$$

$$\sigma = \frac{1}{V} \sum I \otimes f$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum \mathbf{I}\otimes d\mathbf{f}}_{\text{Mechanical}} + \underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes \mathbf{f}}_{\text{Geometric}}$$

$$\sigma = rac{1}{V} \sum I \otimes 1$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum\mathbf{I}\otimes d\mathbf{f}}_{\mathbf{Mechanical}} + \underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes \mathbf{f}}_{\mathbf{Geometric}}$$

$$\sigma = \frac{1}{V} \sum I \otimes f$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum \mathbf{I}\otimes d\mathbf{f}}_{\text{Mechanical}} + \underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes \mathbf{f}}_{\text{Geometric}}$$

Discrete contact approach — Example

Stress rates during loading, $d\sigma \, / \, d\epsilon$

	A	В
Mechanical	+2,253	+4.1
Geometric	-1.9	-4.1
$\sum =$	+2,251	0

Outline

- Micro-view 1: Discrete contact approach
- Micro-view 2: Contact distribution approach
 - Force anisotropy
 - Contact migration
 - Stress rate
 - Example
- Micro-view 3: Discrete stiffness approach

Contact force anisotropy during loading:

Plane strain biaxial loading

Contact force anisotropy during loading:

Plane strain biaxial loading

Force density

Contact force anisotropy during loading:

Plane strain biaxial loading

Force density

Density $\widehat{\mathbf{f}}(\mathbf{n})$

Density rate?

Assembly box

Unit sphere, Ω

Migration of contacts?

 \mathbf{e}_2 \mathbf{e}_3

 \mathbf{e}_1

Contact set

Migration of contacts?

Plane strain biaxial loading

Contact set

Migration of contacts?

Plane strain biaxial loading

Prevailing migration $\dot{\mathbf{n}}(\mathbf{n})$

Plane strain biaxial loading

Plane strain biaxial loading

Plane strain biaxial loading

Stress & force evolution

Force distribution rate:

$$\frac{\partial \widehat{\mathbf{f}}(\mathbf{n})}{\partial t} \bigg|_{\mathbf{n}} = \left(\frac{\partial \widehat{\mathbf{f}}(\mathbf{n})}{\partial t} \right)_{\text{matl}} - \nabla \cdot \left(\dot{\mathbf{n}} \, \widehat{\mathbf{f}}(\mathbf{n}) \right) + \left(\frac{\partial \widehat{\mathbf{f}}(\mathbf{n})}{\partial t} \right)_{\text{diffusion}}$$

$$\boxed{1} \qquad \boxed{2} \qquad \boxed{3}$$

$$\boxed{\text{Matl. rate}} \quad \text{Divergence/} \quad \text{Diffusion}$$

$$\boxed{\text{convection}}$$

Ma and Zhang (2006)

Contact distribution approach — Example

Stress rates during loading, $d\sigma \, / \, d\epsilon$

	A	В
Mechanical	+3,510	+4.0
Geometric	-2	-4.0
$\sum =$	+3,508	0

Outline

- Micro-view 1: Discrete contact approach
- Micro-view 2: Contact distribution approach
- Micro-view 3: Discrete stiffness approach
 - Incremental stiffness
 - Examples
 - Pathologies I
 - Pathologies II

Incremental stiffness of a particle assembly:

Particle movements

[**du**]

External forces

[**df**]

$$[K][du] = [df]$$

$$[K][du] = [df]$$

$$[\mathbf{K}^{\bullet,\bullet}] [d\mathbf{u}] = [d\mathbf{f}]$$

$$[\mathbf{K}^{\circ,\bullet}] [d\mathbf{u}] = [d\mathbf{f}]$$

$$[\mathbf{K}^{\bullet,\circ}] [d\mathbf{u}] = [d\mathbf{f}]$$

$$[\mathbf{K}^{\circ,\circ}] [d\mathbf{u}] = [d\mathbf{f}]$$

$$\Big(\,[\,\textbf{K}^{\text{Mech.}}] + [\,\textbf{K}^{\text{Geom.}}]\,\Big)\,[\,\textbf{\textit{d}}\textbf{\textit{u}}\,] \;=\; [\,\textbf{\textit{d}}\textbf{\textit{f}}\,]$$

Example I: Regular array

$$[K][du] = [df]$$

Stiffness "pathologies":

- Softening
- External instability
- Internal instability
- Non-uniqueness / bifurcation

Pathology 1: Softening

Softening

$$\delta^2 W = dP_1 d\ell_1 + dP_2 d\ell_2 < 0$$

Externally stable

Softening is entirely geometric!

Pathology 2: External instability

Externally unstable

$$\delta^2 W = dP_1 d\ell_1 + dP_2 d\ell_2 < 0$$

Collapse

Pathology 3: Internal instability

Externally stable

Internally unstable

$$\delta^2 W = [d\mathbf{u}]^T [K][d\mathbf{u}] < 0$$

Pathology 3: Internal instability

Example instability mode

Externally stable

Internally unstable

$$\delta^2 W = [du]^T [K][du] < 0$$

Pathology 4: Non-uniqueness / bifurcation

Softening

$$\delta^2 W = dP_1 d\ell_1 + dP_2 d\ell_2 < 0$$

Externally stable

Solution is unique!

Example II: Assembly of 64 disks

(1) Softening

$$\delta^2 W = dP_1 d\ell_1 + dP_2 d\ell_2 < 0$$

Softening is geometric

- (2) Externally stable
- (3) Internally unstable
 At least six unstable modes

$$\delta^2 W = [d\mathbf{u}]^T [K][d\mathbf{u}] < 0$$

(4) Unique solution

Introduction Micro-view 1 Micro-view 2 Micro-view 3

ncremental stiffnes Examples Pathologies I

Pathologies II

Conclusions

Introduction Micro-view 1 Micro-view 2 Micro-view 3

Incremental stiffnes
Examples
Pathologies I
Pathologies II

Questions?