Exploring liquefaction behavior of sand with discrete element simulations

Matthew R. Kuhn, Hannah D. Renken, Austin D. Mixsell

Donald P. Shiley School of Engineering University of Portland

< □ > < 同 > < 回 > < 回 > < 回 > < 回

EMI 2012 Conference South Bend, Indiana June 18–20, 2012

National Science Foundation Grant No. NEESR-936408

DEM Assembly Loading conditions

DEM assembly of 6400 "bumpy" particles

Kuhn, et al. — June 18, 2012 http:// faculty.up.edu / kuhn / papers / EMI2012_Liquefaction.pdf

DEM Assembly Loading conditions

DEM Assembly

- Targeted material: Nevada Sand
- *D*₅₀ = 0.165mm, *C*_u = 2.2
- 6400 particles: lumpy sphere conglomerates
- Void ratio, e = 0.641. Relative density, $D_r = 50\% 60\%$??

イロト イポト イヨト イヨト

э.

DEM Assembly Loading conditions

Outline

Three loading cases:

Case I Uniform amplitude cyclic shearing Case II Sequences of small and large shear pulses Case III Erratic, seismic shearing

• Suitable "Severity Measure" for predicting initial liquefaction

イロト イ押ト イヨト イヨト

Introduction	Case I: Uniform shearing
Three loading cases	Case II: Bi-amplitude shearing
Severity Measures	Case III: Seismic shearing

General loading conditions

- Isotropic consolidation, 80 kPa
- Uni-directional cyclic simple shear
- Undrained conditions: $\varepsilon_{11} = 0$, $\varepsilon_{22} = 0$, $\varepsilon_{33} = 0$,
- Effective stresses inferred from the contact forces

イロト イ押ト イヨト イヨトー

3

Introduction Case I: Uniform shearing Three loading cases Case II: Bi-amplitude shearin Severity Measures Case III: Seismic shearing

Case I: Uniform cyclic shearing

Uniform shearing amplitude:

Control strain rate $\dot{\gamma}$ in a sawtooth pattern until the targeted shear stress τ is attained.

< < >> < <</>

Case I: Uniform cyclic shearing

Conditions: $\tau = \pm 16$ kPa, $p_o = 80$ kPa

Kuhn, et al. — June 18, 2012

Case I: Uniform cyclic shearing

Conditions: $\tau = \pm 16$ kPa, $p_o = 80$ kPa

Kuhn, et al. — June 18, 2012

Introduction Case I: Uniform shearing Three loading cases Case II: Bi-amplitude sheari Severity Measures Case III: Seismic shearing

Case I: Uniform cyclic shearing

Liquefaction curves

イロト イポト イヨト イヨ

Case II: Bi-amplitude cyclic shearing

20 small-amplitude pulses & 5 double-amplitude pulses

Introduction Three loading cases Severity Measures Case II: Bi-amplitude shearing Case III: Seismic shearing

Case II: Bi-amplitude cyclic shearing

20 small-amplitude \longrightarrow 5 double-amplitude pulses

Kuhn, et al. — June 18, 2012 http://

Introduction Case I: Uniform shearing Three loading cases Case II: Bi-amplitude shearing Severity Measures Case III: Seismic shearing

Case II: Bi-amplitude cyclic shearing

5 double-amplitude \longrightarrow 20 small-amplitude pulses

Kuhn, et al. — June 18, 2012

Case III: Seismic shearing

Select 24 sequences of seismic loading (Dr. Steven L. Kramer)

Create CSR, cyclic shear record (Dr. Kramer)

Scale the CSR to prolong pre-liquefaction

 $\begin{bmatrix} a & 0.2 \\ F & 0.1 \\ \hline b & 0 \\ \hline g & 0.1 \\ \hline \end{bmatrix} \begin{bmatrix} c & c \\ c & c \\ \hline c & c \\ c & c \\ \hline c & c \\ \hline c & c \\ c & c \\ c & c \\ \hline c & c \\ c &$

Introduction Case I: Uniform shearing Three loading cases Case II: Bi-amplitude shea Severity Measures Case III: Seismic shearing

Case III: Seismic shearing

Landers 1992 CSR record, scaling factor $\alpha = 0.531$

Kuhn, et al. — June 18, 2012

Introduction	Defin
hree loading cases	
Severity Measures	Suffic

Efficiency Sufficiency

Severity Measures for cyclic loading

Ranking the severities, $1 / \alpha$, of 24 stress records, as surmised from DEM simulations

	CHICHI_CHY088-N_h2 KOCAELI_CNA000_h2	2.398 2.392
	CAPEMEND_SHL090	2.262
ţ	CHICHI_TCU107-N_h2 ITALY_A-BR2000 LANDERS_MCF000 COYOTELK_G06320 WHITTIER_A-CAM009	1.965 1.923 1.883 1.876 1.859
	WHITTIER_A WHD152	1.754
Severity of the CSR record	GREECE E-PLK-MS LOMAP_TIG250 MAMMOTIL_F15300 LOMAP_A02043 WHITTIER_A-R03000 BIGBEAP_H05180 WHITTIER_A-ALT000 COALINGA_D-PVPS80 PALMSPR_JM/H135	1.58 1.577 1.543 1.517 1.499 1.42 1.416 1.34 1.261 1.227 1.124
	HECTOR_12543090	0.864
	NORTHR_VEN090	0.773

MAMMOTH_H-XMC207 0.553

ヘロト ヘ帰 ト ヘヨト ヘヨト

Introduction	Definitions
Three loading cases	
Severity Measures	

"Severity Measure":

- a scalar predictor of initial liquefaction
- computed from a cyclic stress (or strain) record

Introduction	Definitions
Three loading cases	Efficiency
Severity Measures	Sufficiency
Severity Measures	

Possible Severity Measures for the 24 stress records:

- Maximum shear stress, $| au/p_o|_{\max}$
- Energy demand, $\int \tau \, d\varepsilon^{\text{plastic}}$
- Strain path, $\int |d\varepsilon|^2$
- Stress path, $\int \left| \frac{\tau}{p_0} \right| \left| \frac{d\tau}{p} \right|$

Use DEM results to test the efficiency and sufficiency of each Severity Measure.

Efficiencies of four Severity Measures: 24 cyclic stress records

イロト イポト イヨト イヨト

Efficiencies of four Severity Measures: 24 cyclic stress records

イロト イポト イヨト イヨト

æ

Sufficiency

Severity Measures

Sufficiency of the Maximum Shear Stress as a Severity Measure:

 $|\tau/p_o|_{\max}$

Kuhn, et al. - June 18, 2012 http:// faculty.up.edu / kuhn / papers / EMI2012 Liquefaction.pdf

Sufficiency

Severity Measures

Sufficiency of a stress path scalar as a Severity Measure:

> $\frac{d\tau}{n}$ $\frac{\tau}{p_0}$

Kuhn, et al. - June 18, 2012 http:// faculty.up.edu / kuhn / papers / EMI2012 Liquefaction.pdf

	Introduction Three loading cases Severity Measures	Definitions Efficiency Sufficiency
onclusion		

Conclusion:

- Further work
- Future plans

< □ > < □ > < □ > < □ > < □ > < □ >

ъ

	Introduction Three loading cases Severity Measures	Definitions Efficiency Sufficiency		
Questions?				

◆□→ ◆圖→ ◆国→ ◆国→