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Creating the DEM model

Target material: Nevada Sand

Nevada Sand* DEM assembly
Dsg 0.165 mm 0.165 mm
Cu 2.2 2.0
emin—€max  0.511-0.887 0.514-0.897

* Arulmoli, K. et al. (1992)
Kutter, B. L. et al. (1994)
Kammerer, A. M. et al. (2000)
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Grain size distributions
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Model definition
Particles and contacts

DEM assembly of 6400 "bumpy" particles
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Model definition

Particles and contacts

Particle shape

An octahedral cluster of 7 overlapping spheres:
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DEM model

Contact properties:
@ Hertz-Mindlin (elastic-frictional) contact model
@ E=29GPa,»=0.15
@ 1 = 0.60 friction coefficient
@ Sphere-sphere contact

The DEM model should approximate the loading response of
Nevada Sand — in both a qualitative and quantitative manner.
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Verifying the DEM model

Undrained triaxial compression and extension tests

Deviator stress, ¢, kPa
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Verifying the DEM model

Undrained triaxial compression tests — range of densities
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Advantages
DEM summary Shortcomings
Density range

DEM modeling — advantages

Modeling soil behavior with DEM “element” simulations:

@ Experiments can be initiated (or restarted) from the same
assembly.
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DEM modeling — advantages

Modeling soil behavior with DEM “element” simulations:
@ Experiments can be initiated (or restarted) from the same

assembly.
@ Full stress and strain tensors can be measured.

@ Arbitrary control of 6 stress or strain increments.
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Advantages
DEM summary Shortcomings
Density range

DEM modeling — advantages

Modeling soil behavior with DEM “element” simulations:

@ Experiments can be initiated (or restarted) from the same
assembly.

@ Full stress and strain tensors can be measured.
@ Arbitrary control of 6 stress or strain increments.
@ Behavior simulated in the absence of shear bands.

Kuhn, et al. — June 20, 2012 http:// faculty.up.edu / kuhn / papers / EMI2012_



Advantages
DEM summary Shortcomings
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DEM modeling — disadvantages

Shortcomings of DEM simulations:

@ Realistic particle shapes and arrangements are difficult to
create and to calibrate.

@ Relative density is difficult to surmise.
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DEM modeling — disadvantages

Shortcomings of DEM simulations:

@ Realistic particle shapes and arrangements are difficult to
create and to calibrate.

@ Relative density is difficult to surmise.

@ Roughness, texture, and sharp edges of particles are not
modeled.

@ Idealized contact models (Hertz-Mindlin, etc.)
@ Particle breakage or chipping is (usually) disallowed.
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Critical state behavior

Drained simple-shear (constant-p) tests
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Undrained loading
Post-liquefaction
Simple-shear Static liquefaction

Undrained simple-shear

Undrained simple-shear simulations:
@ Isotropic consolidation, 80 kPa
@ Uni-directional shearing: v, > 0, 743 =0, 7,3 =0
@ Undrained conditions: €11 = 0, €52 = 0,33 =0
@ Effective stresses inferred from the contact forces (total
stresses not measured)
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Undrained simple-shear results

Undrained simple-shear:
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Undrained loading
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Undrained simple-shear results

Undrained simple-shear at two consolidation levels:
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Undrained loading
Post-liquefaction
Simple-shear Static liquefaction

Undrained simple-shear results

Undrained simple-shear following cyclic loading:
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Static liguefaction

Stress path for inducing static liquefaction

Shear stress, T
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Static liguefaction

Drained shearing followed by undrained shearing:
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Undrained loading
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Static liguefaction

Drained shearing followed by undrained shearing:
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Post-liquefaction

Static liquefaction followed by consolidation and
by undrained shearing:

Shear stress, 7, kPa
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Summary

@ DEM “element” tests can be used to simulate both drained
and undrained behaviors of sand.

@ Realistic simulations require proper selection of particle
shapes and sizes.

@ Assemblies with densities “above” the critical state line
have not yet been created.

@ DEM test can simulate both static and dynamic liquefaction
phenomena.
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