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Creating the DEM model

Target material: Nevada Sand

Nevada Sand ∗ DEM assembly
D50 0.165 mm 0.165 mm
Cu 2.2 2.0

emin–emax 0.511–0.887 0.514–0.897

* Arulmoli, K. et al. (1992)
Kutter, B. L. et al. (1994)
Kammerer, A. M. et al. (2000)
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Grain size distributions

Nevada Sand

DEM model

Particle size, mm
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DEM assembly of 6400 "bumpy" particles

Kuhn, et al. — June 20, 2012 http:// faculty.up.edu / kuhn / papers / EMI2012_Undrained.pdf



Model definition
DEM summary

Simple-shear

Nevada Sand
Particles and contacts
Model calibration

Particle shape

An octahedral cluster of 7 overlapping spheres:
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DEM model

Contact properties:

Hertz-Mindlin (elastic-frictional) contact model

E = 29 GPa, ν = 0.15

µ = 0.60 friction coefficient

Sphere-sphere contact

The DEM model should approximate the loading response of
Nevada Sand — in both a qualitative and quantitative manner.
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Verifying the DEM model

Undrained triaxial compression and extension tests

Nevada Sand, e = 0.734

Nevada Sand, e = 0.729

DEM, e = 0.734

Mean stress, p, kPa
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Verifying the DEM model

Undrained triaxial compression tests — range of densities

0.641

0.734

0.766
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Void ratio, e
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DEM modeling — advantages

Modeling soil behavior with DEM “element” simulations:

Experiments can be initiated (or restarted) from the same
assembly.

Full stress and strain tensors can be measured.

Arbitrary control of 6 stress or strain increments.

Behavior simulated in the absence of shear bands.
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DEM modeling — disadvantages

Shortcomings of DEM simulations:

Realistic particle shapes and arrangements are difficult to
create and to calibrate.

Relative density is difficult to surmise.

Roughness, texture, and sharp edges of particles are not
modeled.

Idealized contact models (Hertz-Mindlin, etc.)

Particle breakage or chipping is (usually) disallowed.
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Critical state behavior

Drained simple-shear (constant-p) tests
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Undrained simple-shear

Undrained simple-shear simulations:

Isotropic consolidation, 80 kPa

Uni-directional shearing: γ12 > 0, γ13 = 0, γ23 = 0

Undrained conditions: ε11 = 0, ε22 = 0, ε33 = 0

Effective stresses inferred from the contact forces (total
stresses not measured)
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Undrained simple-shear results

Undrained simple-shear:

Void ratio, e = 0.734
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Undrained simple-shear results

Undrained simple-shear at two consolidation levels:

Void ratio, e = 0.734
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Undrained simple-shear results

Undrained simple-shear following cyclic loading:

Void ratio, e = 0.734
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Static liquefaction

Stress path for inducing static liquefaction
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Static liquefaction

Drained shearing followed by undrained shearing:

Void ratio, e = 0.734

Mean stress, p, kPa
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Static liquefaction

Drained shearing followed by undrained shearing:

Void ratio, e = 0.734

Mean stress, p, kPa
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Post-liquefaction

Static liquefaction followed by consolidation and
by undrained shearing:
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Summary

DEM “element” tests can be used to simulate both drained
and undrained behaviors of sand.

Realistic simulations require proper selection of particle
shapes and sizes.

Assemblies with densities “above” the critical state line
have not yet been created.

DEM test can simulate both static and dynamic liquefaction
phenomena.
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Questions?
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