Introduction Model Verification

Entropy model for granular materials at the critical state

Matthew R. Kuhn

Donald P. Shiley School of Engineering University of Portland

イロト イ押ト イヨト イヨト

EMI 2014 Conference Hamilton, Ontario *Aug. 5–8, 2014*

The Critical State in Geomechanics

Bi-axial compression of a 2D disk assembly:

Questions:

• At a micro-scale, is anything unusual at the critical state?

Can we predict micro-scale statistics of fabric?
 Yes, using a MaxEnt principle.

Questions:

 At a micro-scale, is anything unusual at the critical state?
 If given a micro-scale "snapshot," could we recognize whether it was taken at the critical state?

Can we predict micro-scale statistics of fabric?
 Yes, using a MaxEnt principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Questions:

• At a micro-scale, is anything unusual at the critical state?

If given a micro-scale "snapshot," could we recognize whether it was taken at the critical state?

Yes. A condition of maximum disorder.

Can we predict micro-scale statistics of fabric?
 Yes, using a MaxEnt principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Questions:

• At a micro-scale, is anything unusual at the critical state?

If given a micro-scale "snapshot," could we recognize whether it was taken at the critical state?

Yes. A condition of maximum disorder.

Can we predict micro-scale statistics of fabric?
 Yes, using a MaxEnt principle.

・同 ト ・ ヨ ト ・ ヨ ト

Introduction	Critical State
Model	Questions
Verification	Scope and Objectives

Scope and Objectives

- Focus: Contact forces, movements, and orientations at the critical state.
- 2D materials only. Biaxial loading conditions.
- Six contact quantities

 Objective: Probability density distributions of these quantities

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Critical State
Model	Questions
Verification	Scope and Objectives

Scope and Objectives

- Focus: Contact forces, movements, and orientations at the critical state.
- 2D materials only. Biaxial loading conditions.
- Six contact quantities

 Objective: Probability density distributions of these quantities

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Critical State
Model	Questions
Verification	Scope and Objectives
Scope and Objectives	

- Focus: Contact forces, movements, and orientations at the critical state.
 - 2D materials only. Biaxial loading conditions.
 - Six contact quantities

 Objective: Probability density distributions of these quantities

Introduction	Critical State
Model	Questions
Verification	Scope and Objectives
Scope and Objectives	

- Focus: Contact forces, movements, and orientations at the critical state.
 - 2D materials only. Biaxial loading conditions.
 - Six contact quantities

 Objective: Probability density distributions of these quantities

	Introduction Model Verification	Contacts & probabilities Constraints Entropy
ontact model		

Contact model:

- We focus on the contacts, ignoring the particles
- No contact elasticity a purely rigid-frictional model
- No application of affine fields no static or kinematic hypotheses
- No presumed anisotropy
- A flow model contacts are either sliding or non-sliding

The model assumes isochoric critical state flow. We rely upon shearing deformation to drive the contact movements and to generate anisotropy.

・ 同 ト ・ ヨ ト ・ ヨ ト …

	Introduction Model Verification	Contacts & probabilities Constraints Entropy
ontact model		

Contact model:

- We focus on the contacts, ignoring the particles
- No contact elasticity a purely rigid-frictional model
- No application of affine fields no static or kinematic hypotheses
- No presumed anisotropy
- A flow model contacts are either sliding or non-sliding

The model assumes isochoric critical state flow. We rely upon shearing deformation to drive the contact movements and to generate anisotropy.

(雪) (ヨ) (ヨ)

	Introduction Model Verification	Contacts & probabilities Constraints Entropy
Contact model		

Rigid-frictional contact restrictions:

 $g_k^{\mathsf{n}} \in \mathbb{R}^+$ Contact sliding $g_k^{\mathsf{t}} \in \begin{cases} -\mu g_k^{\mathsf{n}} & \Leftarrow & \dot{n}_k - \dot{\phi}_k < 0\\ (-\mu g_k^{\mathsf{n}}, \mu g_k^{\mathsf{n}}) & \Rightarrow & \dot{n}_k - \dot{\phi}_k = 0\\ \mu g_k^{\mathsf{n}} & \Leftarrow & \dot{n}_k - \dot{\phi}_k > 0 \end{cases}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Probability density function of the six contact quantities:

$$p(\cdots) = p(f^n, f^t, \theta^c, \theta^\ell, \dot{n}, \dot{\phi})$$

This probability density must conform to certain constraints

$$\int \cdots \int \Gamma_i(\cdots) p(\cdots) = \overline{\Gamma}_i$$

{ $f^n, f^t, \theta^c, \theta^\ell, \dot{n}, \dot{\phi}$ }

Probability density function of the six contact quantities:

$$p(\cdots) = p(f^{n}, f^{t}, \theta^{c}, \theta^{\ell}, \dot{n}, \dot{\phi})$$

This probability density must conform to certain constraints

$$\int \cdots \int \Gamma_i(\cdots) p(\cdots) = \overline{\Gamma}_i$$

{ $f^n, f^t, \theta^c, \theta^\ell, \dot{n}, \dot{\phi}$ }

	Introduction Model Verification	Contacts & probabilities Constraints Entropy
Constraint #1		

Constraint #1: mean stress = p_0

$$\int \cdots \int f^{n} p(\cdots) = 2p_{0}\overline{\ell} \left(\frac{M}{A}\right)^{-1}$$

$$\{f^{n}, f^{t}, \theta^{c}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

ヘロト 人間 とく ヨン 人 ヨン

æ

Constraint #2: frictional dissipation at the contacts must be consistent with the stress-work

$$\frac{1}{A}\sum f_{k}^{t} \overline{\ell} \left(\dot{n}_{k} - \dot{\phi}_{k} \right) = \boldsymbol{\sigma} : \mathbf{D} \quad \text{with} \quad \mathbf{D} = \begin{bmatrix} -\dot{\varepsilon} & \mathbf{0} \\ \mathbf{0} & \dot{\varepsilon} \end{bmatrix}$$

Oľ

$$\begin{cases} \int \cdots \int \left[f^{t}(\dot{n}_{k} - \dot{\phi}_{k}) + \dot{\varepsilon}f^{n}(-\cos^{2}\theta^{c} + \sin^{2}\theta^{c}) - \dot{\varepsilon}f^{t}(-2\cos\theta^{c}\sin\theta^{c}) \right] p(\cdots) = 0 \end{cases}$$

イロト 不得 トイヨト イヨト

Constraint #2: frictional dissipation at the contacts must be consistent with the stress-work

$$\frac{1}{A}\sum f_{k}^{t} \bar{\ell} (\dot{n}_{k} - \dot{\phi}_{k}) = \boldsymbol{\sigma} : \mathbf{D} \quad \text{with} \quad \mathbf{D} = \begin{bmatrix} -\dot{\varepsilon} & \mathbf{0} \\ \mathbf{0} & \dot{\varepsilon} \end{bmatrix}$$

or

$$\int \cdots \int \left[f^{\mathsf{t}}(\dot{n}_{k} - \dot{\phi}_{k}) + \dot{\varepsilon} f^{\mathsf{n}}(-\cos^{2}\theta^{\mathsf{c}} + \sin^{2}\theta^{\mathsf{c}}) - \dot{\varepsilon} f^{\mathsf{t}}(-2\cos\theta^{\mathsf{c}}\sin\theta^{\mathsf{c}}) \right] p(\cdots) = 0$$

イロト 不得 トイヨト イヨト

э.

	Introduction Model Verification	Contacts & probabilities Constraints Entropy	
Constraint #3			

Constraint #3: isochoric flow

$$tr(\mathbf{D}) = 0$$

or

 $\int \cdots \int \mathcal{K}(\theta^{c}, \theta^{\ell}) \dot{n} (\sin \theta^{c} \sin \theta^{\ell} + \cos \theta^{c} \cos \theta^{\ell}) p(\cdots) = 0$ { $f^{n}, f^{t}, \theta^{c}, \theta^{\ell}, \dot{n}, \dot{\phi}$ }

$$\mathcal{K}(heta^{\mathsf{c}}, heta^{\ell}) = egin{cases} rac{1}{2} - rac{1}{2\pi} \mathsf{mod}(heta^{\ell} - heta^{\mathsf{c}}, 2\pi) & heta^{\ell}
eq heta^{\mathsf{c}} \ 0 & heta^{\ell} = heta^{\mathsf{c}} \ \end{pmatrix}$$

通 と く ヨ と く ヨ と

	Introduction Model Verification	Contacts & probabilities Constraints Entropy	
Constraint #4			

Constraint #4: 11.2% of contacts are sliding (from DEM data).

Constraint #1: mean stress = p_0

$$\int \cdots \int f^{n} p(\cdots) = 2p_{o}\overline{\ell} \left(\frac{M}{A}\right)^{-1}$$
$$\{f^{n}, f^{t}, \theta^{c}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

イロト イポト イヨト イヨト

Constraint #1: mean stress = p_0

$$\int \cdots \int f^{n} p(\cdots) = 2p_{o}\overline{\ell} \left(\frac{M}{A}\right)^{-1}$$

$$\{f^{n}, f^{t}, \theta^{c}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

イロト イポト イヨト イヨト

Constraint #1: mean stress = p_0

Constraint #1: mean stress = p_0

Constraint #1: mean stress = p_0

Introc	Juction Contacts & probabilities Model Constraints fication Entropy
Disorder	

The Shannon entropy associated with the probability density:

$$H\{p(\cdots)\} = -\int \cdots \int p(\cdots) \ln(p(\cdots)) + \{f^{\mathsf{n}}, f^{\mathsf{t}}, \theta^{\mathsf{c}}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

The density $p(\dots)$ with the largest entropy corresponds to the most likely "macro-state" and encompasses the broadest combination of the 6 contact quantities.

Must maximize H subject to the constraints #1, #2, #3, and #4.

・ 同 ト ・ ヨ ト ・ ヨ ト

	Introduction Model Verification	Contacts & probabilities Constraints Entropy	
Disorder			

The Shannon entropy associated with the probability density:

$$H\{p(\cdots)\} = - \int \cdots \int p(\cdots) \ln(p(\cdots)) \\ \{f^{\mathsf{n}}, f^{\mathsf{t}}, \theta^{\mathsf{c}}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

The density $p(\dots)$ with the largest entropy corresponds to the most likely "macro-state" and encompasses the broadest combination of the 6 contact quantities.

Must maximize H subject to the constraints #1, #2, #3, and #4.

・ 戸 ト ・ ヨ ト ・ ヨ ト -

	Introduction Model Verification	Contacts & probabilities Constraints Entropy	
Disorder			

The Shannon entropy associated with the probability density:

$$H\{p(\cdots)\} = -\int \cdots \int p(\cdots) \ln(p(\cdots)) + \{f^{\mathsf{n}}, f^{\mathsf{t}}, \theta^{\mathsf{c}}, \theta^{\ell}, \dot{n}, \dot{\phi}\}$$

The density $p(\dots)$ with the largest entropy corresponds to the most likely "macro-state" and encompasses the broadest combination of the 6 contact quantities.

Must maximize H subject to the constraints #1, #2, #3, and #4.

Entropy H is maximized with the following probability density:

$$p(\cdots) = \frac{1}{Z(\cdots)} \exp\left(-\sum_{i=1}^{4} \lambda_i \Gamma_i(\cdots)\right)$$

where the Γ_i are Lagrange multipliers, and the $\Gamma_i(\cdots)$ functions.

For example,

 $\Gamma_1(\cdots) = f^n$

Entropy *H* is maximized with the following probability density:

$$p(\cdots) = \frac{1}{Z(\cdots)} \exp\left(-\sum_{i=1}^{4} \lambda_i \Gamma_i(\cdots)\right)$$

where the Γ_i are Lagrange multipliers, and the $\Gamma_i(\cdots)$ functions.

For example,

$$\Gamma_1(\cdots) = f^n$$

イロト 不得 トイヨト イヨト

э

Anisotropy of contact forces:

э

	Introduction Model Verification	Anisotropy Force density distribution Weak & strong contacts
Normal forces		

Probability density of the normal contact forces:

Weak-strong contacts

Contribution of contacts to the bulk deviatoric stress.

Other investigators have found that the most heavily loaded contacts account for nearly the entire deviatoric stress.

- The critical state is characterized by a maximum disorder model
- The disorder model predicts fabric anisotropy reasonably well.
- The disorder model predicts the deviatoric reasonably well.
- The model does require information that is not readily available (the % of sliding contacts).

- The critical state is characterized by a maximum disorder model
- The disorder model predicts fabric anisotropy reasonably well.
- The disorder model predicts the deviatoric reasonably well.
- The model does require information that is not readily available (the % of sliding contacts).

- The critical state is characterized by a maximum disorder model
- The disorder model predicts fabric anisotropy reasonably well.
- The disorder model predicts the deviatoric reasonably well.
- The model does require information that is not readily available (the % of sliding contacts).

	Introduction Model Verification	Anisotropy Force density distribution Weak & strong contacts
Questions?		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- M. R. Kuhn, "Boundary integral for gradient averaging in two dimensions: application to polygonal regions in granular materials," *Int. J. Num. Methods Engrg.*, (2004) Vol. 59, No. 4, 559–576.
- M. R. Kuhn, "Dense granular flow at the critical state: maximum entropy and topological disorder," *Granular Matter*, (2014) Vol. 16, No. 4, 499–508.