

Contact longevity, speed, and migration during loading of dense granular materials

Matthew R. Kuhn

Donald P. Shiley School of Engineering University of Portland, kuhn@up.edu

Regime of interest

Slow quasi-static deformation of granular assemblies: spheres and non-convex sphere clusters. DEM simulations.

Questions concerning slow quasi-static loading

1. How active are particle and contact motions during slow loading?

WaiChing Sun The Fu Foundation School of Engrg. and Applied Sci.,

Columbia University, wsun@columbia.edu

Tangential contact motions are a complex combination of rolling, sliding, and rigid rotation

- 2. How closely do motions conform with an affine field?
- 3. How frequently are contacts created and separated?

General contact migration — trixial compression

Contacts mapped onto the unit sphere of orientations:

Vertical triaxial compression

General migration of contacts on the unit sphere

- In general, contacts are "conveyed" from directions of compressive strain toward directions of extensional strain.
- These are "general trends," which are only distinguished by observing the motions of thousands of contacts.

"Trail" of a typical contact moving across a particle

		/ •]	\bigcirc . I		
$ d\mathbf{u}^{\text{contact sliding}} $	$/ d\mathbf{u}^{affine} $	5.9	5.4		
$ d\mathbf{u}^{\text{contact roll}} / \mathbf{e} $	$d\mathbf{u}^{affine}$	14.4	1.9		
Large strain					
$ d\mathbf{\hat{u}}^{\text{particle centers}} $	$/ d\mathbf{u}^{\text{affine}} $	15.4	7.5		
$ d\mathbf{u}^{contact sliding} $	$/ d\mathbf{u}^{\text{affine}} $	9.7	7.9		
$ d\mathbf{u}^{\text{contact roll}} / d\mathbf{u}^{contac$	$d\mathbf{u}^{affine} $	39.4	5.1		

- Contact motions are 2–40 times larger than affine values.
- Contact motions increase with increasing strain.
- Spheres vs. clusters: Cluster motions are closer to the affine condition.

Contact longevity: half-life (in strain) of a contact

	Half-life, strain	
_	Spheres	Clusters
Initial contacts	0.0068	0.0041
Subsequent contacts	0.00018	0.0024

• During slow loading, contacts are ephemeral. Only half of the initial contacts remain after 1% strain. Subsequently created contacts have a much shorter half-life.

- Actual contact motions are quite erratic.
- Contact slip occurs intermittently (in red).
- Motion is often in the "wrong direction" opposite the general direction of contact migration.
- Motion rates are much larger than the strain rate (see below).

Particle motions rarely conform with an affine field

• In the figure, a value of (0,1) corresponds to the affine field. Affine motion is to the right.

• For each contact at a current strain, 4–7 contacts will be created (and 4–7 will be broken) during the next 1% strain.

Persistence of "force chains" across strains

- Figure shows the fraction of remaining force chains, starting at strain $\varepsilon_{11} = 6\%$.
- Force chains are ephemeral.
- The "half-life" of force chains is a strain of 0.05%-0.2%.

Observations and more questions

- How are we to develop continuum models that are based on micro-mechanics when grain motions are so varied, irregular, and nearly erratic?
- Motions are more regular for non-convex particles than for spheres, and motions are more regular at small strains than at large strains. Perhaps micro-mechanics of highly non-convex particles and be effectively used for sands at small strains.
- Motions are large and highly varied, and many particles move in the "wrong direction."
- Dispersion of contact motions increases with strain.
- Perhaps non-deterministic models kinetic theories and entropy-based approaches — can give better results for granular materials than can deterministic multi-scale models.

This research is partially supported by the Earth Materials and Processes program at the US Army Research Office under grant contract W911NF-14-1-0658 and the Provosts Grants Program for Junior Faculty who Contribute to the Diversity Goals of the University at Columbia University. These supports are gratefully acknowledged.

EMI 2015 — June 16–19 — Stanford University