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1 Problem Summary

e Regime of behavior: Dense granular flow of 2-dimensional
material (i.e., “steady-state” or “critical state” tlow)

e Phenomena of interest: Probability distributions of the local
void topology (void cell valence) and particle topology
(coordination number)

e Hypothesis: these probability distributions can be estimated
by applying a maximum entropy principle.

2 Background
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Dense granular flow at the “critical state

e Characterized by constant bulk characteristics: constant
volume, constant mean stress, constant shear stress, constant
fabric anisotropy, etc.

o Yet, at the micro-scale, change is rapid and pervasive.

e Our focus is on the continually changing contact topology.

Topology of two-dimensional flow

Bulk measures ot topology:

Mean coordination no. =7 Mean void valence =

The particle graph is a planar graph that represents the
contacts (edges), particles (vertices), voids (faces, polygons).

The particle graph continually changes:

e New contacts “split” existing polygons
e [ost contacts “merge” existing polygons

These changes of topology will completely alter the particle
graph during small increments of deformation.
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Void cell valence

3 Solution

e Objective: theory-based probability distributions of the void
valences and coordination numbers

e Premise: topology is maximally disordered during granular
flow

o Step 1: Categorize the individual void polygons (i.e., develop
a taxonomy of void type).

Any planar graph can be constructed from a “journal” ot
pairs (l;, AM;):
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Each pair describes an additional void that is appended to
the previous planar graph:

l; = valence of the appended polygon
AM; = no. of added edges to create the polygon

e Step 2: Discrete probability distribution by type:
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o Step 3: Constraints due to the average coordination number,
average valence, and Euler’s equation:
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o Step 4: Maximize the Shannon entropy, H:
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e Step 5: Using the Jaynes formalism, solve to find the void
valence probabilities:
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with a partition function Z(\;, A2) and Lagrange multipliers
A1 and A, that satisty the mean coordination number and
void valence.

exp (=AMl — MAM)

Pray =

e Step 6: use the duality principle to derive the corresponding
probability distribution of coordination numbers.

4 Verification

Comparison of predicted probability distributions with discrete

element (DEM) simulations:
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