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1 Problem Summary

e Regime of behavior: Dense granular flow of 2-dimensional
material (i.e., “steady-state” or “critical state” flow)

e Phenomena of interest: Probability distributions of contact
quantities (contact forces, movements, & orientations)

e Hypothesis: these probability distributions can be estimated
by applying a maximum entropy principle.

2 Background
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Dense granular flow at the “critical state”:

e Characterized by constant bulk characteristics: constant
volume, constant mean stress, constant shear stress, constant
fabric anisotropy, etc.

e Yet, at the micro-scale, change is rapid and pervasive.

o The critical state exhibits a “convergent” character: materials
with different initial densities and arrangements converge
toward the same density and fabric.

Typical results

Biaxial compression with constant mean stress: DEM

simulations.
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Note that stress deviatoric stress ratio, ¢/p, converges toward
a steady-state value.

3 Entropy Model

e Objective: theory-based probability distributions of the
contact forces, movements, and orientations

e We investigate six contact quantities:

Y,
oC. 0
i éSk k

@
Quantity Description

f" Compressive normal contact force

f*  Tangential contact force

0° Orientation of contact normal vector n°

9  Orientation of branch vector I°

n Relative angular shift of particles” centers

¢ Contact movement from particle rotations, %(«9Z +6))

e Rigid-frictional contact law
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e Probability density of the six contact quantities:
p(fn7 fta Qcaeghv ¢> Or p()

e Four constraints on the density:

1. Mean stress = p,

2. Isochoric flow

3. Frictional dissipation consistent with work o : D
4. Fraction of sliding contacts, n = 11.2%

e Disorder (Shannon entropy):
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e Solution of maximum entropy — Jaynes’ formalism — with
Lagrange multipliers ); to enforce the four constraints:

p(---) = Z(.l. - exp ( Z \Ti(- - ))

4 Verification

Comparison of predicted distributions with discrete element
(DEM) simulations:

e Anisotropy of contact force:
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e Probability density of contact forces:
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e Contribution of weak and strong contacts to deviator stress g:

].O T 1 Y 1 T 1 T oODOOvY ¥ i
L OOO

o
o1

Cumulative fraction of
deviator stress q

o
o

Normal force, f", normed

Gordon Research Conference — Granular & Granular-Fluid Flow
July 20-25 — Stonehill College — Easton, MA



