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1 Problem Summary

• Regime of behavior: Dense granular flow of 2-dimensional
material (i.e., “steady-state” or “critical state” flow)

• Phenomena of interest: Probability distributions of contact
quantities (contact forces, movements, & orientations)

• Hypothesis: these probability distributions can be estimated
by applying a maximum entropy principle.

2 Background

Dense granular flow at the “critical state”:

• Characterized by constant bulk characteristics: constant
volume, constant mean stress, constant shear stress, constant
fabric anisotropy, etc.

• Yet, at the micro-scale, change is rapid and pervasive.

• The critical state exhibits a “convergent” character: materials
with different initial densities and arrangements converge
toward the same density and fabric.

Typical results

Biaxial compression with constant mean stress: DEM
simulations.
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Note that stress deviatoric stress ratio, q/p, converges toward
a steady-state value.

3 Entropy Model

• Objective: theory-based probability distributions of the
contact forces, movements, and orientations

• We investigate six contact quantities:

Quantity Description

fn Compressive normal contact force
f t Tangential contact force
θc Orientation of contact normal vector nc

θℓ Orientation of branch vector lℓ

ṅ Relative angular shift of particles’ centers

φ̇ Contact movement from particle rotations, 12(θ̇i + θ̇j)

• Rigid-frictional contact law

fn
k ∈ R

+ and f t
k ∈










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

−µfn
k ⇐ ṅk − φ̇k < 0

(−µfn
k , µf

n
k ) ⇒ ṅk − φ̇k = 0

µfn
k ⇐ ṅk − φ̇k > 0

• Probability density of the six contact quantities:

p
(

fn, f t, θc, θℓṅ, φ̇
)

or p(· · · )

• Four constraints on the density:

1. Mean stress = po
2. Isochoric flow

3. Frictional dissipation consistent with work σ : D

4. Fraction of sliding contacts, η = 11.2%

• Disorder (Shannon entropy):

H (p(· · · )) = −

∫

· · ·

∫

{fn,f t,θc,θℓ,ṅ,φ̇}

p(· · · ) ln (p(· · · ))

• Solution of maximum entropy — Jaynes’ formalism — with
Lagrange multipliers λi to enforce the four constraints:

p(· · · ) =
1

Z(· · · )
exp

(

−
4
∑

i=1

λiΓi(· · · )

)

4 Verification

Comparison of predicted distributions with discrete element
(DEM) simulations:

• Anisotropy of contact force:
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• Probability density of contact forces:
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Normal force, fn, normed
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• Contribution of weak and strong contacts to deviator stress q:

Normal force, fn, normed
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