Scaling in Granular Materials

Matthew R. Kuhn

University of Portland

Powders & Grains 2005

Outline

- Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- Summary

Introduction

Limitations of the talk!

- Quasi-static (time-invariant) behavior of dense packings
- Durable particles
- Experimental & analytical
- Discrete micro-mechanics
- Emphasis on behavior at large strains

Five Examples of Granular Behavior

Dominant behaviors at large strains:

Softening	(2 examples)
-----------------------------	--------------

Instability	(2 examples)
-------------------------------	--------------

Outline

- 1 Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- 4 Summary

Example #1: Granular Softening

Softening of a regular 2D array

Example #1: Granular Softening

Softening of a regular 2D array

Example #2: Granular Softening

Softening of 4096 spheres — DEM simulation

Densely packed

Plane-strain, biaxial compression

Example #2: Granular Softening

Softening of 4096 spheres — DEM simulation

Plane-strain, biaxial compression

Outline

- 1 Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- 4 Summary

Instability of 2-particle systems

Instability of 2-particle systems

Instability of 2-particle systems

Stable system:

Instability in 256 disks — DEM simulation Biaxial compression

Instability in 256 disks — DEM simulation Biaxial compression

256 disks — DEM simulation

256 disks — Detail around a granular "hole"

256 disks — Plot of internal instability

Outline

- Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- Summary

Localization in 40,500 disks — DEM simulation

40,500 disks — Localized shearing

40,500 disks — Localized shearing

40,500 disks — Localized shearing

Outline

- 1 Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- Summary

Origins of granular softening:

1) Mechanical

Produced by contact deformations

Depends upon particle material properties

Origins of granular softening:

1) Mechanical

Produced by contact deformations

Depends upon particle material properties

Geometric

Produced by contact re-orientations

Depends upon particle shapes

Example: Granular Softening

Softening of 4096 spheres — DEM results

Plane-strain, biaxial compression

Calculation of average stress

$$\sigma = \frac{1}{V} \sum I \otimes f$$

Calculation of stress increment

$$\sigma = \frac{1}{V} \sum I \otimes f$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum \mathbf{I}\otimes d\mathbf{f}}_{\mathbf{Mechanical}} + \underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes d\mathbf{f}}_{\mathbf{Geometric}}$$

Calculation of stress increment

$$\sigma = \frac{1}{V} \sum I \otimes f$$

$$d\sigma = -\frac{dV}{V}\sigma + \underbrace{\frac{1}{V}\sum \mathbf{I}\otimes d\mathbf{f}}_{\mathbf{Mechanical}} + \underbrace{\frac{1}{V}\sum d\mathbf{I}\otimes \mathbf{f}}_{\mathbf{Geometric}}$$

Granular Softening — Example

Stress rates during loading, $d\sigma/k d\epsilon \times 1000$

	Α	В
Mechanical	-2.9	1.4
Geometric	-1.7	-1.4
$\sum =$	-4.6	0

Granular Softening — Another Example

Softening of a regular array of disks

Here, softening is entirely geometric!

Outline

- Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- Summary

Granular Instability

Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

Granular Instability

Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

Example:

Granular Instability

Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

Another example:

Granular Stiffness and Instability

Incremental stiffness of a particle assembly:

Particle movements

$$\begin{bmatrix} d\mathbf{u} \\ d\theta \end{bmatrix}$$

External forces & moments

Contact model: soft contacts, time invariant

GEM, Y. Kishino, 1989

Granular Stiffness and Instability

Incremental stiffness matrix:

$$\left[\begin{array}{c} \mathbf{K} \end{array} \right] \left[\frac{d\mathbf{u}}{d\theta} \right] = \left[\frac{d\mathbf{f}}{d\mathbf{m}} \right]$$

Granular Stiffness and Instability

Incremental stiffness matrix:

$$\left(\left[\begin{array}{c} \mathbf{K}^{\mathsf{Mechanical}} \end{array} \right] + \left[\begin{array}{c} \mathbf{K}^{\mathsf{Geometric}} \end{array} \right] \right) \left[\frac{d\mathbf{u}}{d\theta} \right] = \left[\frac{d\mathbf{f}}{d\mathbf{m}} \right]$$

Bagi 2005; Kuhn & Chang 2005

Granular Stiffness — Example

2-particle example,

 6×6 stiffness matrix

$$K \begin{bmatrix} 1 & 0 & 0 & | -1 & 0 & 0 \\ 0 & 1 & r & | & 0 & -1 & r \\ 0 & r & r^2 & | & 0 & -r & r^2 \\ -1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & -1 & -r & | & 0 & 1 & -r \\ 0 & r & r^2 & | & 0 & -r & r^2 \end{bmatrix}$$
Mechanical

$$\frac{f}{2\rho} \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & \rho - r & 0 & 1 & \rho - r \\
0 & \rho - r & \rho^2 - r^2 & 0 & r - \rho & (\rho - r)^2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & r - \rho & 0 & -1 & r - \rho \\
0 & \rho - r & (\rho - r)^2 & 0 & r - \rho & \rho^2 - r^2
\end{bmatrix}$$

Geometric

Structural Stiffness — Analogy

Mechanical and geometric stiffnesses of a simple structure:

Granular Stiffness — Scaling

Scaling of granular stiffness(es):

Mechanical
$$\longrightarrow$$
 k $\stackrel{\text{Hertz}}{\longrightarrow}$ $p^{1/3}$, $E^{2/3}$, r
Geometric \longrightarrow f/ρ \longrightarrow p^1 , r^2 , $1/\rho$

Mechanical stiffness dominates at small strains

Both stiffnesses are important at large strains

Granular Stiffness — Scaling

Scaling of granular stiffness(es):

Mechanical
$$\longrightarrow$$
 k $\stackrel{\text{Hertz}}{\longrightarrow}$ $p^{1/3}$, $E^{2/3}$, r
Geometric \longrightarrow f/ρ \longrightarrow p^1 , r^2 , $1/\rho$

Mechanical stiffness dominates at small strains

Both stiffnesses are important at large strains!

Granular Stiffness — Scaling

Scaling of granular stiffness(es):

Mechanical
$$\longrightarrow$$
 k $\stackrel{\text{Hertz}}{\longrightarrow}$ $p^{1/3}$, $E^{2/3}$, r Geometric \longrightarrow f/ρ \longrightarrow p^1 , r^2 , $1/\rho$

Mechanical stiffness dominates at small strains

Both stiffnesses are important at large strains!

Instability and Softening — Criteria

$$\left(\left[\mathbf{K}^{\mathsf{Mechanical}} \right] + \left[\mathbf{K}^{\mathsf{Geometric}} \right] \right) \left[\frac{d\mathbf{u}}{d\theta} \right] = \left[\frac{d\mathbf{f}}{d\mathbf{m}} \right]$$

Second-order work criteria for discrete systems:

$$\delta^2 W = \begin{bmatrix} -\frac{d\mathbf{u}}{d\theta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -\frac{d\mathbf{f}}{d\mathbf{m}} \end{bmatrix} < 0$$
 1) Necessary for instability 2) Sufficient for softening in the direction $[d\mathbf{u}/d\theta]$

Instability and Softening — Criteria

$$\left(\left[\begin{array}{c} \mathbf{K}^{\text{Mechanical}} \end{array} \right] + \left[\begin{array}{c} \mathbf{K}^{\text{Geometric}} \end{array} \right] \right) \left[\frac{d\mathbf{u}}{d\theta} \right] = \left[\frac{d\mathbf{f}}{d\mathbf{m}} \right]$$

Second-order work criteria for discrete systems:

$$\delta^2 W = \begin{bmatrix} -\frac{d\mathbf{u}}{d\theta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -\frac{d\mathbf{f}}{d\mathbf{m}} \end{bmatrix} < 0$$
 1) Necessary for instability 2) Sufficient for softening in the direction $[d\mathbf{u}/d\theta]$

Darve et al., PG2005

Second-order work criteria:

$$\delta^2 \textit{W} \ = \ \ell \, \textit{d}\theta \cdot \textit{d}\mathbf{f} < 0 \quad \Rightarrow \quad \text{and} \quad \text{Softening}$$

Second-order work criteria:

$$\delta^2 \textit{W} \ = \ \ell \, \textit{d}\theta \cdot \textit{d}\mathbf{f} < 0 \quad \Rightarrow \quad \begin{array}{c} \text{Stable} \\ \text{but} \\ \text{Softening} \end{array}$$

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of $[K]^{Symmetric}$

Difficulties:

- 1) Non-symmetric, $[K] = [K^{Mechanical}] + [K^{Geometric}]$
- Incrementally non-linear ⇒ Multiple stiffness branches,

$$[K] = \{ [K^1], [K^2], \dots \}$$

Must check multiple branches to investigate directional stability.

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of $[\mathbf{K}]^{\text{Symmetric}}$

Difficulties:

- 1) Non-symmetric, $[\mathbf{K}] = [\mathbf{K}^{\text{Mechanical}}] + [\mathbf{K}^{\text{Geometric}}]$
- Incrementally non-linear ⇒ Multiple stiffness branches,

$$[K] = \{ [K^1], [K^2], \dots \}$$

Must check multiple branches to investigate directional stability.

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of $[K]^{Symmetric}$

Difficulties:

- 1) Non-symmetric, $[\mathbf{K}] = [\mathbf{K}^{Mechanical}] + [\mathbf{K}^{Geometric}]$
- Incrementally non-linear ⇒ Multiple stiffness branches,

$$[K] = \{ [K^1], [K^2], \dots \}$$

Must check multiple branches to investigate directional stability.

Internal instability during softening

Instability of 4 particles

Search for unstable eigenmodes:

$$\lambda < 0 \Rightarrow \delta^2 W < 0$$

Y. Kishino, "Characteristic deformation analysis"

9 Unstable eigenmodes, with λ < 0:

9 Unstable eigenmodes, with λ < 0:

9 Unstable eigenmodes, with λ < 0:

Tamura et al. 1995 O'Sullivan-Bray, PG2005

Softening and instability of 256 disks — DEM simulation Biaxial compression

Softening — effect of contact curvatures

Incremental softening is halted when curvatures " ρ " are increased by 12%.

Softening — effect of contact curvatures

Incremental softening is halted when curvatures " ρ " are increased by 12%.

Sources of instability and softening (negative 2nd-order work)

1) Geometric stiffness

- 2) Mechanical stiffness
 - a) Contact friction
 - b) Particle fracture (Bolton et al., PG2005)

Sources of instability and softening (negative 2nd-order work)

1) Geometric stiffness

- 2) Mechanical stiffness
 - a) Contact friction
 - b) Particle fracture (Bolton et al., PG2005)

Outline

- Introduction
- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization
- 4 Summary

Localization — Softening — Instability

Localization in the shearing of 40,500 disks

Localization — Softening — Instability

Hardening and softening inside a shear band — $\delta^2 W$

Iwashita & Oda, PG2001

Summary

At large strains . . .

- Granular behavior is dominated by softening, instability, and localization phenomena.
- The study and scaling of these phenomena must account for their mechanical and geometric origins.

Questions

Scaling of Granular Behavior

Effect of confinement pressure on strength 4096 "durable" spheres — DEM simulations

Scaling of Granular Behavior

Effect of confinement pressure on shear band thickness 4096 "durable" spheres — DEM simulations

Contact friction can produce instability and softening:

Negative 2nd-order work,

$$\delta^2 W = du_1 dP_1 + du_2 dP_2 < 0$$

$$P_1 = \mu P_2$$
 when $du_2 < 0$ and $du_1 > \frac{1}{\mu} |du_2|$

(Mandel, Bažant)