Continuum Models of Discrete Particle Systems with Particle Shape Considered

Matthew R. Kuhn1 \quad Ching S. Chang2

1University of Portland

2University of Massachusetts

McMAT Mechanics and Materials Conference 2005
Outline

1. Introduction

2. Quantifying high-gradient behavior
 - DEM “bending” experiments
 - Questions about granular behavior
 - Experiment results
Continuum vs. Discrete Frameworks

Continuum Small (but finite!) granular sub-region Continuum point

Kuhn & Chang, McMAT2005
Continuum-Discrete Granular Models with Bending
Classical vs. Generalized Continua

Continuum representations...

<table>
<thead>
<tr>
<th>Classical continuum</th>
<th>Generalized continua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1) Micro-polar</td>
</tr>
<tr>
<td></td>
<td>2) Strain gradient dependent</td>
</tr>
<tr>
<td></td>
<td>3) Non-local</td>
</tr>
</tbody>
</table>

Uniform deformation

\[
\frac{\partial \epsilon / \partial \mathbf{x}}{\epsilon} \ll \frac{1}{D}
\]

High-gradient deformation

\[
\frac{\partial \epsilon / \partial \mathbf{x}}{\epsilon} \approx \frac{1}{D}
\]
Outline

1. Introduction

2. Quantifying high-gradient behavior
 - DEM “bending” experiments
 - Questions about granular behavior
 - Experiment results

Kuhn & Chang, McMAT2005
Continuum-Discrete Granular Models with Bending
DEM “Bending” Experiments — 2D

“Uniform” deformation

“Bending” deformation

Strain:

Horiz. strain \(\epsilon_{11} \)

Vert. gradient \(\frac{d\epsilon_{11}}{dx_2} \)

Rotation:

Horiz. gradient \(\frac{d\theta}{dx_1} \)
Generalized Continuum Stresses

Continuum representation of stress . . .

$$\delta W_{\text{Internal}} = \sigma_{ji} \delta u_{i,j} + T_{ji} \delta \theta_{i,j} + \sigma_{jki} \delta u_{i,jk}$$
Continuum representation of stress...

\[\delta W_{\text{Internal}} = \sigma_{ji} \delta u_{i,j} + T_{ji} \delta \theta_{i,j} + \sigma_{jki} \delta u_{i,jk} \]
Generalized Continuum Stresses

Continuum representation of stress . . .

\[\delta W_{\text{Internal}} = \sigma_{ji} \delta u_{i,j} + T_{ji} \delta \theta_{i,j} + \sigma_{jki} \delta u_{i,jk} \]

\[\sigma_{11} \quad \sigma_{12} \quad \sigma_{22} \]

\[T_{13} \quad \sigma_{121} \]
DEM Simulations — 256 Particles — Circles or Ovals
Bending Resistance in a Discrete Region

Boundary Moments:

\[
T_{13}
\]

Boundary Forces:

\[
\sigma_{121}
\]

Bending Moment = \(T_{13} \quad (+) \quad \sigma_{121}\)
Outline

1. Introduction

2. Quantifying high-gradient behavior
 - DEM “bending” experiments
 - Questions about granular behavior
 - Experiment results
Questions:

1. Are the boundary moments significant?
 \[|T_{13}| > 0 \]

2. Are boundary forces consistent with classical beam theory?
 \[\sigma_{121} \rightarrow E I \frac{d^2 u_1}{dx_1 dx_2} \]
Questions:

1. Are the boundary moments significant?
 \[|T_{13}| > 0 ? \]

2. Are boundary forces consistent with classical beam theory?
 \[\sigma_{121} \rightarrow E I \frac{d^2 u_1}{dx_1 dx_2} ? \]
Introduction

Quantifying high-gradient behavior

DEM “bending” experiments

Questions about granular behavior

Experiment results
Results Summary

Experiment results — incremental response:

<table>
<thead>
<tr>
<th>Question</th>
<th>Small strain</th>
<th>Large strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) $</td>
<td>T_{13}</td>
<td>> 0$?</td>
</tr>
<tr>
<td>2) $\sigma_{121} \rightarrow EI \frac{d^2u_1}{dx_1dx_2}$?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Graph

- **Deviator stress** $\frac{(\sigma_{11} - \sigma_{22})}{p_0}$
- **Compressive strain** $-\varepsilon_{11}$

- **Small strain**
 - Circles
- **Large strain**
 - Ovals
 - Large strain

Kuhn & Chang, McMAT2005

Continuum-Discrete Granular Models with Bending
Results Summary

Boundary Moments:

\[T_{13} \]

Bending Moment = \(T_{13} (\sigma_{121}) \)

Boundary Forces:

\[\sigma_{121} \]
Experiment results — incremental response:

<table>
<thead>
<tr>
<th>Question</th>
<th>Small strain</th>
<th>Large strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) $</td>
<td>T_{13}</td>
<td>> 0$?</td>
</tr>
<tr>
<td>2) $\sigma_{121} \rightarrow EI \frac{d^2 u_1}{dx_1 dx_2}$?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

![Graph of deviator stress vs. compressive strain](image)

- Large strain
- Small strain
- Circles
- Ovals

Kuhn & Chang, McMAT2005

Continuum-Discrete Granular Models with Bending
Results Details

DEM Simulation Results

Dimensionless Bending Stiffnesses

256 particles — 50 assemblies

Large Strain

<table>
<thead>
<tr>
<th></th>
<th>Circles</th>
<th>Ovals</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>T_{13}</td>
<td>$ Boundary moments</td>
</tr>
<tr>
<td>σ_{121} Boundary forces</td>
<td>0.60</td>
<td>1.16</td>
</tr>
<tr>
<td>EIu'' “Beam theory”</td>
<td>0.25</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Kuhn & Chang, McMAT2005

Continuum-Discrete Granular Models with Bending
Summary

- **DEM simulations** can probe the response of small regions to high strain gradients.
- **Cosserat-type torque stress** does not contribute to incremental bending stiffness.
- **A generalized stiffness** is associated with the 1st gradient of strain. Stiffness is larger for oval particles.
Are granular materials simple? An experimental study of strain gradient effects and localization.

On virtual work and stress in granular media.