

Measurement of Micro-Polar Effects in Granular Materials

Ching S. Chang Dept. of Civil and Env. Engrg. Univ. of Massachusetts *chang@ecs.umass.edu*

1 An Unusual 2D Experiment

2. Does the particle shape affect this relative bending stiffness ?

3. Does the assembly size affect the relative bending stiffness ?

General conditions:

• DEM simulations: three 2D particle shapes

3 **Results**

1. A simple / classical material ? *No* ! Not at the peak state. Stiffness 256 circles Compression tests (Stage I) E/k, loading 0.00 E/k, unloading 0.38 $(E_{\text{loading}} + E_{\text{unloading}})/2k$ 0.19 Flexural tests (Stage II) $(dM/d\psi) \cdot (1/I k)$ 0.38 $\approx \times 2.00 \text{ increase}$

Stiffness is greater when deformation includes strain and rotation gradients. This observation is inconsistent with a simple / classical material.

2. Influence of particle shape ? *No*.

	Increased
	flexural stiffness
Shape	256 particles
Circles	\times 2.00 increase
Ovals	imes 1.73 increase

- 256 1024 4096 particles
- Flexible boundaries
- Linear/frictional contacts. No contact moments.
- Quasi-static deformation

Stage II flexure:

The boundary displacements produce an incremental curvature $d\psi$,

$$du_1 = d\psi \ x_1 x_2 \Rightarrow d\psi$$

which creates gradients of strain and rotation:

$$\frac{\epsilon_{11}}{x_2} = d\psi$$
 and $\frac{\partial\theta}{\partial x_1} = d\psi$

2 Three Questions

1. Is the incremental "flexural stiffness" consistent with a simple / classical material? dM ? 1 /

 $\frac{dM}{d\psi} \stackrel{?}{\doteq} I \cdot \frac{1}{2} \left(E_{\text{loading}} + E_{\text{unloading}} \right)$

where $I = \frac{1}{12} \ell_2^3$. The "*E*" values are those measured during uniform (Stage I) compression and extension — with no gradients of strain or rotation.

Nobbies \times 1.75 increase

The three shapes exhibit similar increases in flexural stiffness.

3. Influence of assembly size ? *No*.

	Increased
	flexural stiffness,
Assembly size	Circles
256 particles	\times 2.00 increase
1024 particles	imes 2.09 increase
4096 particles	imes 2.14 increase

Small and large assemblies exhibit about the same increases in flexural stiffness.

4 **Conclusions and Implications**

- At the start of loading (small strains), granular stiffness nearly conforms to that of a simple material within a classical continuum.
- At the peak state (large strains), granular stiffness *does not* conform to that of a simple material within a classical continuum.
- Oddly, particle shape has very little effect on the relative increase in stiffness.

- Possible continuum models:
 - (1) Strain-gradient dependent material within a classical continuum.
 (2) Cosserat continuum.
- Either continuum model would predict a more elevated flexural stiffness for small assemblies than for large assemblies. Oddly, the experiments contradict this prediction.

Powders & Grains 2009 July 13–17 — Colorado School of Mines — Golden, CO