Discrete Models for Granular Materials

Matthew R. Kuhn

University of Portland

Multiscale Mathematics and Engineering Seminar Series

Outline

Introduction & Scope

- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization

⇒ ↓ = ↓ = | = √Q ○

Introduction & Scope

Limitations of the talk !!

- Possible ranges of behavior
 - Rapid flows (single- and multi-phase)
 - Quasi-static behavior small strains
 - Quasi-static behavior large strains
- Quasi-static (time-invariant) behavior of dense packings
- Emphasis on behavior at large strains
- Emphasis on micro- and meso- scales

Introduction

Discrete simulation models:

- Discrete Element Method (DEM, Cundall) Molecular Dynamics (MD)
- Discontinuous Deformation Analysis (DDA, Shi) Granular Element Method (GEM, Kishino)
- Contact Dynamics (CD, Moreau)

▲□ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 ● の Q ()

Softening examples nstability examples _ocalization example

Five Examples of Granular Behavior

Dominant behaviors at large strains:

- Softening
- Instability
- Localization

(2 examples)

- (2 examples)
- (1 example)

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

Softening examples Instability examples Localization example

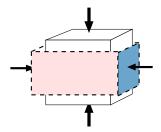
Outline

Introduction & Scope

- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization

Summary

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

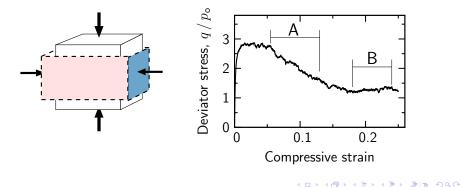

Softening examples Instability examples Localization example

Example #1: Granular Softening

Softening of 4096 spheres — DEM simulation

Densely packed

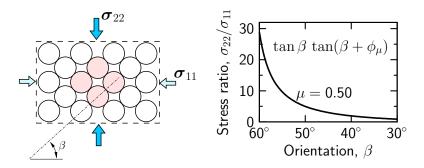
Plane-strain, biaxial compression



Softening examples Instability examples Localization example

Example #1: Granular Softening

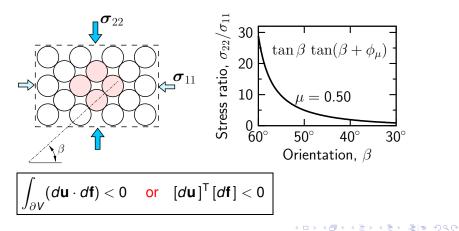
Softening of 4096 spheres — DEM simulation


Plane-strain, biaxial compression

Softening examples Instability examples Localization example

Example #2: Granular Softening

Softening of a regular 2D array



IATEX

Softening examples Instability examples Localization example

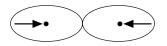
Example #2: Granular Softening

Softening of a regular 2D array

Softening examples Instability examples Localization example

Outline

Introduction & Scope

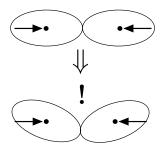

- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization

Summary

Softening examples Instability examples Localization example

Example #3: Instability

Instability of 2-particle systems

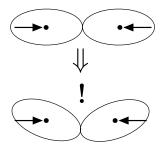

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

IATEX

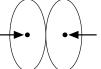
Softening examples Instability examples Localization example

Example #3: Instability

Instability of 2-particle systems


< □ > < 同 >

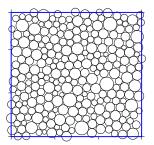
IATEX


Softening examples Instability examples Localization example

Example #3: Instability

Instability of 2-particle systems

Stable system:

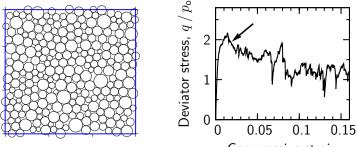

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Softening examples Instability examples Localization example

Example #4: Instability

Instability in 256 disks — DEM simulation

Biaxial compression


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

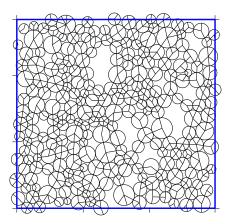
Softening examples Instability examples Localization example

Example #4: Instability

Instability in 256 disks — DEM simulation

Biaxial compression

Compressive strain

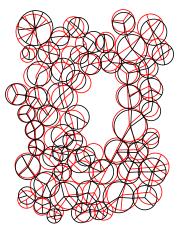

< □ > < 同 >

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q Q

Softening examples Instability examples Localization example

Example #4: Instability

256 disks — DEM simulation

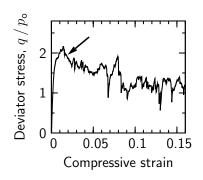

IATEX

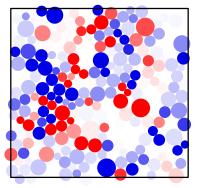
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Softening examples Instability examples Localization example

Example #4: Instability

256 disks — Detail around a granular "hole"


IATEX


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Softening examples Instability examples Localization example

Example #4: Instability

256 disks — Plot of internal instability

< □ > < 同 >

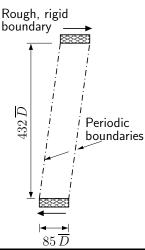
★ E ▶ ★ E ▶ E = のQQ

Softening examples Instability examples Localization example

Outline

Introduction & Scope

- Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 - Softening
 - Instability
 - Localization

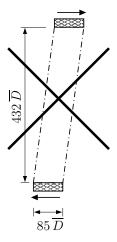

Summary

< 一型

Softening examples Instability examples Localization example

Example #5: Localization

Localization in 40,500 disks - DEM simulation

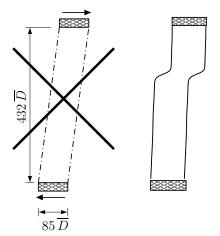


ヨ▶ ▲ヨ▶ 三日 のへで

Softening examples Instability examples Localization example

Example #5: Localization

40,500 disks — Localized shearing

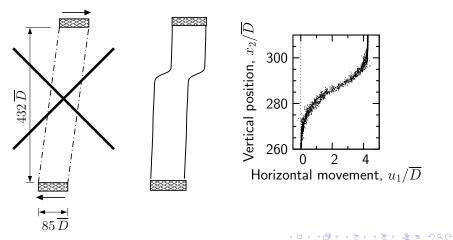


◆ 글 ▶ < 글 ▶ < 글 ▶ < 글 ▶</p>

Softening examples Instability examples Localization example

Example #5: Localization

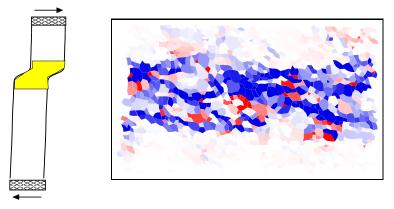
40,500 disks — Localized shearing


◆ 글 ▶ < 글 ▶ < 글 ▶ < 글 ▶</p>

IATEX

Softening examples Instability examples Localization example

Example #5: Localization


40,500 disks — Localized shearing

Softening examples Instability examples Localization example

Localization

Localization inside of a shear band

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

IATEX

Softening Instability Localization

Outline

- 2 Examples of Granular Behavior
 - Softening examples
 - Instability examples
 - Localization example
- Origins and Scaling of Behavior
 Softening
 - Soliening
 - Instability
 - Localization

Summary

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Softening Instability Localization

Granular Softening

Origins of granular softening:

1) Mechanical

Produced by contact deformations

Depends upon particle material properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

Softening Instability Localization

Granular Softening

Origins of granular softening:

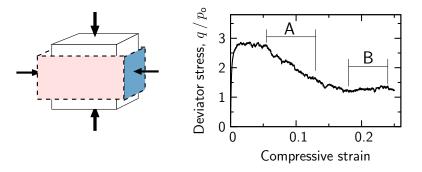
1) Mechanical

Produced by contact deformations

Depends upon particle material properties

2) Geometric

Produced by contact re-orientations

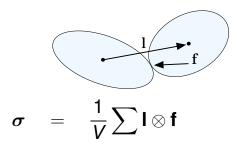

Depends upon particle shapes

Softening Instability Localization

Example: Granular Softening

Softening of 4096 spheres — DEM results

Plane-strain, biaxial compression


IATEX

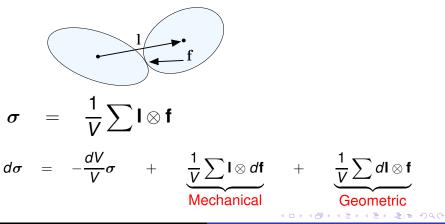
3 = 1 - 0 Q (~

Softening Instability Localization

Granular Softening

Calculation of average stress

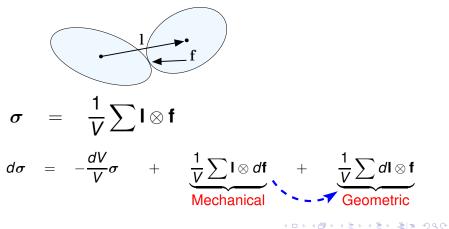
< □ > < 同 >


- ▲ 톤 ▶ ▲ 톤 ▶ ▲ 톤 ■ ■ ∽ � � �

IATEX

Softening Instability Localization

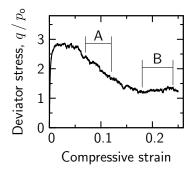
Granular Softening


Calculation of stress increment

Softening Instability Localization

Granular Softening

Calculation of stress increment

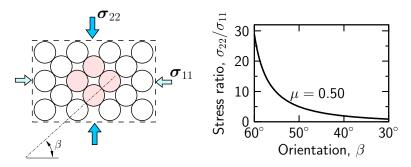


IATEX

Softening Instability Localization

Granular Softening — Example

Stress rates during loading, $d\sigma/k\,d\epsilon imes$ 1000


	А	В
Mechanical	-2.9	+1.4
Geometric	-1.7	-1.4
$\sum =$	-4.6	0

> ↓ ∃ ► ↓ ∃ = √ Q Q

Softening Instability Localization

Granular Softening — Another Example

Softening of a regular array of disks

Here, softening is entirely geometric !

IATEX

⇒ ↓ = ↓ = | = √Q ○

Softening Instability Localization

Outline

Origins and Scaling of Behavior

- Softening
- Instability
- Localization

Summary

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Softening Instability Localization

Granular Instability

Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Softening Instability Localization

Granular Instability

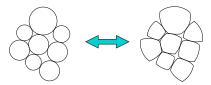
Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

Example:

< □ > < 同 >

★ E ▶ ★ E ▶ E = のQQ

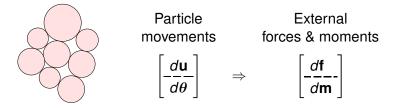

Softening Instability Localization

Granular Instability

Origins of granular stiffness:

- 1) Mechanical
- 2) Geometric

Another example:

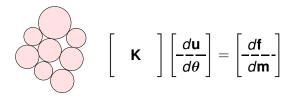

< 17 ▶

★ E ▶ ★ E ▶ E = のQ@

Softening Instability Localization

Granular Stiffness and Instability

Incremental stiffness of a particle assembly:



Contact model: soft contacts, time invariant GEM, Y. Kishino, 1989

Softening Instability Localization

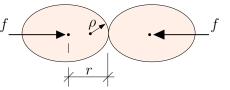
Granular Stiffness and Instability

Incremental stiffness matrix:

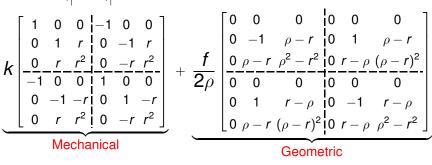
▲□ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 ● の Q ()

Softening Instability Localization

Granular Stiffness and Instability


Incremental stiffness matrix:

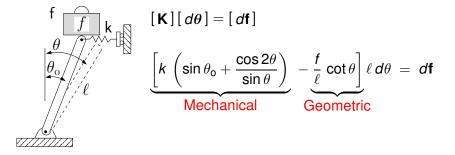
$$\left(\left[\mathbf{K}^{\text{Mechanical}} \right] + \left[\mathbf{K}^{\text{Geometric}} \right] \right) \left[\frac{d\mathbf{u}}{d\theta} \right] = \left[\frac{d\mathbf{f}}{d\mathbf{m}} \right]$$


Kuhn & Chang 2005, PG2005

Softening Instability Localization

Granular Stiffness — Example

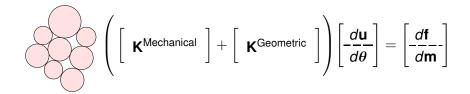
2-particle example, 6×6 stiffness matrix



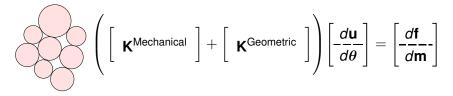
⇒ ↓ = ↓ = | = √Q ()

Softening Instability Localization

Structural Stiffness — Analogy


Mechanical and geometric stiffnesses of a simple structure:

⇒ ↓ = ↓ = | = √Q ()

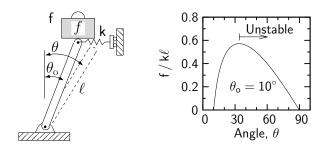

Softening Instability Localization

Instability and Softening — Criteria

Instability

Instability and Softening — Criteria

Second-order work criteria for discrete systems:

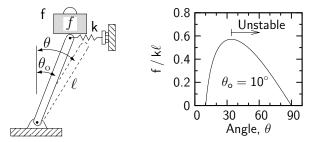

$$\delta^2 W = \left[\frac{d\mathbf{u}}{d\theta}\right]^{\mathsf{T}} \left[\frac{d\mathbf{f}}{d\mathbf{m}}\right] < 0$$

 $\begin{cases} 1) \text{ Necessary for instability} \\ 2) \text{ Sufficient for softening} \\ \text{ in the direction } [d\mathbf{u}/d\theta] \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Softening Instability Localization

Structural Instability and Softening — Analogy



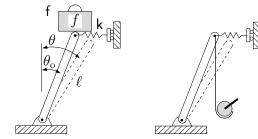
IATEX

▶ ▲ 분 ▶ 분 単 ● 9 Q @

Softening Instability Localization

Structural Instability and Softening — Analogy

 \Rightarrow

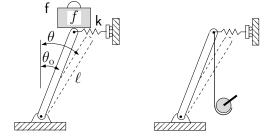

Second-order work criteria:

$$\delta^2 W = \ell \, d\theta \cdot d\mathbf{f} < 0$$

⇒ ↓ = ↓ = | = √Q ()

Softening Instability Localization

Structural Instability and Softening — Analogy


IATEX

▲ E ▶ < E ▶ E = のQ @

Softening Instability Localization

Ot a la la

Structural Instability and Softening — Analogy

Second-order work criteria:

$$\delta^2 W = \ell \, d\theta \cdot d\mathbf{f} < 0 \quad \Rightarrow \quad \text{but}$$

Softening

Softening Instability Localization

Granular Instability and Softening

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of $[\mathbf{K}]^{Symmetric}$ Difficulties:

1) Non-symmetric, $[K] = [K^{Mechanical}] + [K^{Geometric}]$

 Incrementally non-linear ⇒ Multiple stiffness branches,

 $[\mathbf{K}] = \{ [\mathbf{K}^1], [\mathbf{K}^2], \dots \}$

Must check multiple branches to investigate directional stability.

Softening Instability Localization

Granular Instability and Softening

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of $[\mathbf{K}]^{Symmetric}$ Difficulties:

1) Non-symmetric, $[\mathbf{K}] = [\mathbf{K}^{\text{Mechanical}}] + [\mathbf{K}^{\text{Geometric}}]$

 Incrementally non-linear ⇒ Multiple stiffness branches,

 $[\mathbf{K}] = \{ [\mathbf{K}^1], [\mathbf{K}^2], \dots \}$

Must check multiple branches to investigate directional stability.

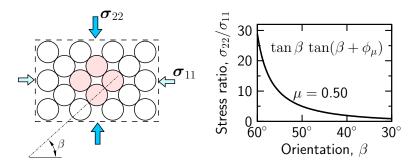
Softening Instability Localization

Granular Instability and Softening

Investigating granular instability, $\delta^2 W \stackrel{?}{<} 0$:

Discrete systems \longrightarrow Search eigenvalues of [K]^{Symmetric} Difficulties:

- 1) Non-symmetric, $[\mathbf{K}] = [\mathbf{K}^{\text{Mechanical}}] + [\mathbf{K}^{\text{Geometric}}]$
- 2) Incrementally non-linear \Rightarrow Multiple stiffness branches,

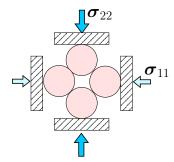

 $[\,K\,]=\{\,[\,K^1],\;[\,K^2],\;\dots\,\}$

Must check multiple branches to investigate directional stability.

Softening Instability Localization

Granular Instability and Softening — Example

Internal instability during softening

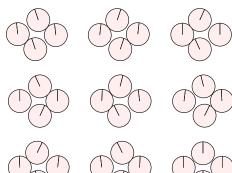


⇒ ↓ = ↓ = | = √Q ()

Softening Instability Localization

Granular Instability and Softening — Example

Instability of 4 particles

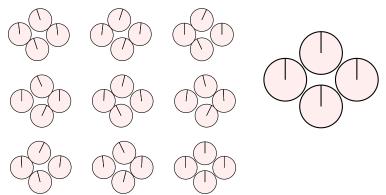

Search for unstable eigenmodes:

$$\lambda < 0 \Rightarrow \delta^2 W < 0$$

Softening Instability Localization

Granular Instability and Softening — Example

9 Unstable eigenmodes, with $\lambda < 0$:

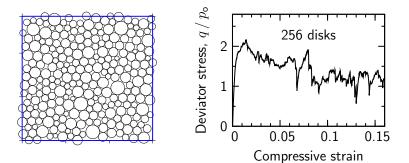

IATEX

⇒ ↓ = ↓ = | = √Q ()

Softening Instability Localization

Granular Instability and Softening — Example

9 Unstable eigenmodes, with $\lambda < 0$:

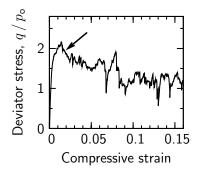

IATEX

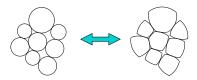
▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Softening Instability Localization

Granular Instability and Softening — Another Example

Softening and instability of 256 disks — DEM simulation Biaxial compression

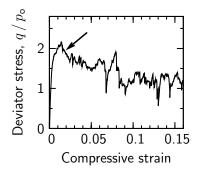

INTEX

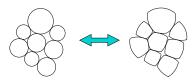

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

Softening Instability Localization

Granular Instability and Softening — Another Example

Softening — effect of contact curvatures


Incremental softening is halted when curvatures " ρ " are increased by 12%.

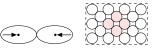

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

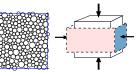
Softening Instability Localization

Granular Instability and Softening — Another Example

Softening — effect of contact curvatures

Incremental softening is halted when curvatures " ρ " are increased by 12%.


⇒ ↓ = ↓ = | = √Q ()


Softening Instability Localization

Granular Instability and Softening

Sources of instability and softening (negative 2nd-order work)

1) Geometric stiffness

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

- 2) Mechanical stiffness
 - a) Contact friction
 - b) Particle fracture

Softening Instability Localization

Outline

- Softening examples
- Instability examples
- Localization example

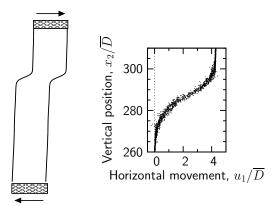
Origins and Scaling of Behavior

- Softening
- Instability
- Localization

Summary

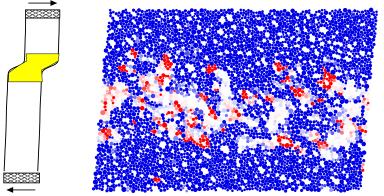
▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

 Introduction & Scope
 Softening


 Examples of Granular Behavior
 Instability

 Origins and Scaling of Behavior
 Summary

 Localization
 Softening


 Localization
 Softening

Localization in the shearing of 40,500 disks

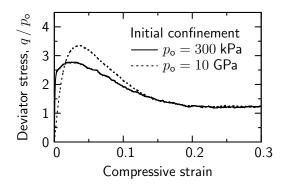
IATEX

Introduction & Scope
Examples of Granular Behavior
Origins and Scaling of Behavior
SummarySoftening
Instability
LocalizationLocalization — Softening — Instability
Hardening and softening inside a shear band — $\delta^2 W$

Summary

At large strains ...

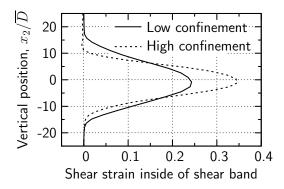
- Discrete simulation models, such as the DEM, permit the study of micro-, meso-, and macro-scale behaviors.
- At the micro-scale, the DEM reveals exceedingly complex micro-scale behavior.
- This complexity gives rise to macro-scale phenomena: softening, instability, and localization.
- Stiffness (matrix) models offer a means of studying these phenomena.


Questions

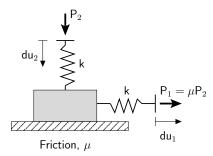
Kuhn, April 25, 2006 http:// faculty.up.edu / kuhn / papers / Pullman.pdf

IAT_EX

Scaling of Granular Behavior


Effect of confinement pressure on strength 4096 "durable" spheres — DEM simulations

JIN NOR


Scaling of Granular Behavior

Effect of confinement pressure on shear band thickness 4096 "durable" spheres — DEM simulations

Granular Instability and Softening

Contact friction can produce instability and softening:

Negative 2nd-order work, $\delta^2 W = du_1 dP_1 + du_2 dP_2 < 0$ $P_1 = \mu P_2 \quad \text{when } du_2 < 0 \text{ and } du_1 > \frac{1}{\mu} |du_2|$

⇒ ↓ = ↓ = | = √Q ()

(Mandel, Bažant)