
PARTICLE ROLLING AND ITS EFFECTS IN
GRANULAR MATERIALS

Matthew R. Kuhn,
Dept. of Civ. and Env. Engrg., School of Engrg.,

Univ. of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA,
Tel. 503-943-7361, Fax 503-943-7316, kuhn@up.edu.

Katalin Bagi,
Hungarian Academy of Sciences, Research Group for Computational Structural Mechanics,

Technical University of Budapest, Budapest H–1521, Hungary, kbagi@mail.bme.hu.

ABSTRACT
The paper includes a summary of previous work, currently in review, concerning alternative
definitions of the relative rotation and rolling between particle pairs. These definitions provide a
basis for objective contact mechanisms that include the effects of relative rotational movements
as well as the relative translations of the particles at a contact. The definitions of rolling can
also be used to decompose the motions of two particles into separate modes: sliding, rolling,
and rigid-body motions of the pair. The rolling mode is investigated in 2D and 3D numerical
simulations, in which we measure the intensity of contact rolling as the entire assembly is
deformed. We also consider the spatial distribution of rolling in a 2D numerical simulation, for
which the local movements and deformations are more easily visualized.

1. INTRODUCTION
Granular materials are large assemblies of particles that interact at the contacts of particle pairs.
The particle interactions can take numerous forms, all of which contribute to a material’s bulk
stress and deformation characteristics. As an example, early studies showed that stress is borne
in an uneven manner during the deviatoric loading of a granular material: “force chains” of
heavily loaded particles support most of the deviatoric stress when a granular material is loaded
from an initially isotropic state. This redistribution and evolution in force transmission is due
to one form of the motions among particle pairs, in particular, those motions that produce a
deformation of the grains at their contacts. Another form of particle motions was recognized by
Oda and his co-workers in their early experiments on model assemblies of oval shape disks [1].
They found that particle rotations become quite large at even modest deviatoric strains, and they
identified particle rolling as a dominant characteristic of the deformation of granular materials.
They also speculated that rolling produced a softening effect, and that particle rolling would
partially negate the strengthening effect of inter-granular friction. This assumption coincides
with the view of Thornton [2] who considered contact friction as a kinematic constraint that
gives rise to particle rolling. Several forms of rotational patterning have been identified by the
authors, who have employed various visualization techniques to explore the results of computer
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Figure 1. Two particles in contact.

(DEM) simulations of biaxial compression in two-dimensional (2D) assemblies [3]. These
patterns included the formation of thin bands of particles that trend in directions oblique to the
principal deformation axes, and within these bands the particles rotate in a common direction.

The authors embarked upon a program to scrutinize the rotational and rolling motions that
occur during the deformation of a granular material. To do so, we first had to develop a vo-
cabulary and definitions for the various forms of inter-particle movements. These forms are
presented in Section 2 and include deformation, rolling, twisting, and rigid rotation modes.
Even the simple term “rolling” admits numerous definitions, and the choice of one or another
definition depends as much upon perception and preference, as it does upon the contact me-
chanics. We were guided, in part, by the studies of Iwashita and Oda [4], who defined a type of
rolling between 2D circular disks, and this and other definitions are extended to 3D particles of
arbitrary shape. In Section 3 we present the results of simple DEM simulations of biaxial and
triaxial loading. Various features of the rolling motion are discussed.

2. DEFINITIONS OF ROLLING
Consider two particles, p and q, to which we assign the material reference points χp and χq

(Fig. 1). These reference points are located at positions xp and xq relative to the global axes.
The two particles are in contact, and the vectors rp and rq connect the reference points χp

and χq to the contact point; whereas the branch vector l connects the two reference points:
l = rp − rq. The contact is assumed to be point-like—the contact area is negligibly small in
comparison with the displacements. The particles undergo the incremental translational and ro-
tational movements dup, dup, dθp, and dθq during the time increment dt. These four movement
vectors are described by twelve scalar components, which form a 12-dimensional vector space
of possible movements. In classical kinematics, the particles might be truly rigid, and, hence,
prevented from inter-penetration (a non-holonomic constraint), but the behavior of granular ma-
terials is influenced by the local particle deformations at their contacts. These deformations are
produced by the relative motions of the two particles,

dudef = (duq − dup) + (dθq × rq − dθp × rp) , (1)

which can be separated into components that are tangent and normal to the contact surface [5, 6,
7]. The deformation motion (1) accounts for three of the twelve degrees of freedom of the par-
ticle pair. The deformation motion is objective, since its scalar components would be properly
reported by two observers having independent motions [8]. Because the contact deformation is
objective, it may be used in a constitutive description of the contact force–deformation relation-
ship.



The authors have identified three definitions of rolling motion. The simplest is based on the
relative rotation of the particle pair,

dθrel = dθq − dθp , (2)

and, like the deformation motion in (1), the relative rotation (2) is clearly objective. The motion
dθrel can be separated into two components, one aligned with and the other orthogonal to the
contact normal n:

dθrel, roll, 1 = dθrel − (dθrel · n)n (3)

dθrel, twist = (dθrel · n)n , (4)

where the contact normal n is directed outward from particle p. The index “1” denotes the
name “Type 1” rolling, as described by the authors [9]. The four motions (1)–(4) would be
assigned opposite (negative) values if the indices p and q are exchanged. When plotting graphic
visualizations of simulation results, we have often used alternative forms of (3) and (4), since
the values of these forms do not depend upon the order of the indices:

dθrel, roll, 1 × n (5)

dθrel, twist · n . (6)

A second form of rolling is based upon a particular average of the motions of two material
points, one attached to each of the particles at their contact, like the teeth of two inter-meshed
gears moving in unison. The average translational velocity of the two points (e.g. the opposing
gear teeth) is, of course, not objective, and the magnitude of its tangential-direction component
dut-avr,

dut-avr =
1
2

[(dup + dθp × rp) · t + (duq + dθq × rq) · t] , (7)

is also not objective. However, the motions that are associated with the common rigid-body-like
rotation of the pair can be subtracted from dut-avr to produce an objective measure of rolling [7]:

dut-roll, 2 =
1
2

[
(dθp · zt)(rp · λt) + (dθq · zt)(rq · dλt) − (duq − dup) · t

`⊥t
(rp + rq) · λt

]
, (8)

where the unit vectors zt and λt depend upon the directions of a tangent vector t and the branch
vector l:

λt = l⊥t/`⊥t , zt = λt × t , (9)

with
l⊥t = l − (l · t)t, `⊥t = |l⊥t| . (10)

The quantity dut-roll, 2 is termed “Type 2” rolling. Similar measures of rolling that are asso-
ciated with the normal n or another tangent direction (say, direction w) can be computed by
substituting n or w in equations (8)–(10).

A third form of rolling is based upon the paths of the contact points as they travel across the
two surfaces while the particles move. For example, when two inter-meshed gears rotate, the
contact point moves from tooth to tooth around the two gears. This form of rolling requires a
knowledge of the local surface curvatures of the two particles at the contact [10, 8]:

duroll, 3 = − (Kp + Kq)−1

[
dθrel × n +

1
2

(Kp −Kq) dudef
]
, (11)
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(b) 3D assembly

Figure 2. Biaxial and triaxial loading conditions for the simulated compression of a disk and sphere
assemblies. The initial and final sizes are shown to scale. All boundaries are periodic. The disk assembly
was initially square; the sphere assembly was initially a cube.

where Kp and Kq are the surface curvature tensors, and dudef is the component of dudef, defined
by (1), in the tangent plane of the contact. This “Type 3” rolling is clearly objective, since
it is a linear combination of the objective motions dudef and dθrel. The vector duroll, 3 lies in
the tangent plane of the contact, and its value is independent of the order of particles p and q.
Because it always lies in the tangent plane, duroll, 3 is restricted to a 2-dimensional subspace of
vectors. The rolling translation duroll, 3 should, therefore, be supplemented with an auxiliary
rolling quantity, say dθrel, twist, to complete the 6-dimensional subspace of objective motions
(for example, a subspace formed from the motions dudef, duroll, 3, and dθrel, twist). Motions that
lie outside of this six-dimensional space, but within the 12-dimensional space of all motions,
are non-objective [9].

3. SIMULATION EXAMPLE
The rates and influence of contact rolling were measured in numerical simulations of biaxial and
triaxial compression. A conventional implementation of the Discrete Element Method (DEM)
was used to simulate the quasi-static behavior of large 2D and 3D assemblies of 10,816 un-
bonded circular disks and 4096 spheres. The disk and sphere sizes were randomly distributed
over a fairly narrow range of between 0.56–1.7D (disks) and 0.49–1.35D (spheres), where D is
the mean particle diameter. The material was created by slowly and isotropically compacting
a sparse arrangement of particles, during which friction between particle pairs was disallowed
(friction was later restored for the compression tests). This compaction technique produced a
material that was dense, random, and isotropic, at least when viewed at a macro-scale. The
square and cube assemblies were surrounded by periodic boundaries, a choice that eliminates
any non-uniformities that might otherwise occur in the vicinity of rigid platens or assembly
corners.

A single loading test was conducted on each of the two assemblies. The height of each
assembly was reduced at a constant rate of compressive strain until its final height was less
than half of the original height, while maintaining a constant average horizontal stress along
the side boundaries, as in Figure 2. The large strains were sufficient to eventually attain a
steady state (critical state) condition in which the stress and volume remained constant, even
as deformation proceeded. Over 10 × 106 numerical time steps were required to reach the final
vertical (engineering) strain, ε22 = − 0.59, and at this rate of loading, the average imbalance of
force on a particle was typically less than 4×10−4 times the average contact force.

During compression loading, a simple force mechanism was employed between contacting
particles. The particles were unbonded, so that no inter-particle tensile forces could develop.
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Figure 3. Loading of 2D and 3D assemblies of circular disks and spheres. The deviator stress is shown
in a dimensionless form by dividing by the initial pressure po.

Table 1. Conditions at three strains for the biaxial compression of 10,200 circular disks.

State
Zero strain Peak state Steady state

Vertical strain 0 0.003 0.549
Number of contacts, M 20640 17460 15960
Number effective particles, N̄ 10120 9860 9720
Avg. coord. no., 2N/M 3.82 3.23 2.95
Avg. eff. coord. no., 2M/N̄ 4.08 3.54 3.29
Void ratio, e 0.1727 0.1727 0.2362

a) |Mean(duroll 2,3 /D/dε)| 0.0013 0.014 0.059
b) Mean(|duroll 2,3 /D/dε|) 0.26 2.74 14.8
c) Std(|duroll 2,3 /D/dε|) 0.23 4.08 31.2

All contact forces were short-range—only particles that were touching could develop a repulsive
contact force, and this force depended on the numerical overlap between a contacting particle
pair. Linear normal and tangential contact springs were assigned equal stiffnesses (kn = kt), and
slipping between particles would occur whenever the contact friction coefficient of 0.50 was
attained—an inter-particle friction angle of 26.6◦.

3.1. Assembly of circular disks (2D)
We investigated the behavior of the disk assembly at three strains: at the start of loading (“zero
strain”), at the condition of peak deviator stress (“peak state”), and at the “steady state” (Fig. 3).
The assembly’s fabric at these three states is summarized in Table 3.1. The number of contacts
is substantially reduced at both the peak and steady states, and the number of effective particles,
those having two or more contacts, is also reduced. Intense dilation occurs prior to and beyond
the peak state, and greatly reduces the average and effective coordination numbers.

We will focus on the rolling of Types 2 and 3 of Eqs. (8) and (11), which, for circular par-
ticles, are equal and occur entirely in the tangent direction (because of the particular manner
in which they were defined, however, the two types of rolling occur in opposite directions).
A summary of Types 2 and 3 rolling in the disk assembly is given in the lower half of Ta-
ble 3.1, which reports the mean rolling rate and its statistical dispersion among the 9,700 to
10,100 contacts within the 2D assembly. We have expressed the rolling translations duroll in
a dimensionless form by dividing by the vertical strain increment dε and by the mean particle
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(b) Polar distribution of the mean rol-
ling rates

Figure 4. Distribution of Types 2 and 3 rolling during biaxial compression of a disk assembly.

diameter D. The product Ddε is a rough measure of the relative translations among nearby
particles during the deformation increment dε. The rolling translations duroll are vectors whose
directions are independent of the particular ordering of the particle pairs (i.e., independent of
an exchange of indices p and q, as in Section 2). To extract meaningful averages from this set
of vectors, we report the magnitude of the mean of the vectors (row a, Table 3.1) and the mean
and standard deviation of their magnitudes (rows b and c). The mean of the rolling vectors is
quite small (row a) at all three strains, which suggests that there is no preferred direction of
rolling, as might be the case within a dominant shear band. The mean magnitude of rolling at
zero strain (row b) is also small: a value of 0.23 indicates that the rolling occurs at rates much
smaller that the average relative motions of nearby particle pairs. The rolling rate at the peak
state, however, is very large, and the steady state, the rolling rates are extreme. A histogram
of the distribution of rolling rates at the peak state is given in Fig. 4a, which shows that many
contacts (about 17% of all contacts) are rolling at rates greater than 5 times Ddε. Large rolling
rates are also pervasive throughout the assembly at the peak state, and fewer than 33% of the
contacts have rolling rates less than 0.5Ddε. At all strains, rolling occurs among contacts of all
orientations, as is shown in Fig. 4b. In this figure, the orientation of the contact normal n is an
angle β measured from the horizontal axis: β = arccos(n · e2).

Although we have not yet analyzed all of the data, we have observed one unusual spatial
pattern in the rolling among circular disks. Figure 5 shows a small subset of the assembly, a
representative subset of fewer than 450 particles. The arrows indicate the rolling vectors duroll

for each contact at the peak state (some contacts have such small rolling rates that their rolling
vectors may not be visible). This small sample shows that the largest rolling rates are usually
found around a few particles, rather than being more evenly dispersed among all contacts. With
each of the most active particles, the rolling vectors are usually directed in a common manner
around the particle—the rolling vectors around an active particle are usually either entirely
clockwise or entirely counter-clockwise.

3.2. Assembly of spheres (3D)
The 3D assembly of spheres exhibited many of the same characteristics as the 2D assembly of
disks. Fabric conditions at zero strain, at the peak state, and at the steady state are given in
Table 3.2. As with the assembly of disks, the number of contacts is greatly reduced at the peak
state, but only a small reduction occurs between the peak and steady states.

The rolling rates are also shown in Table 3.2, which gives the Type 2 and 3 translational
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Figure 5. Rolling within a sub-region of the disk assembly.

Table 2. Conditions at three strains for the triaxial compression of 4,096 spheres.

State
Zero strain Peak state Steady state

Vertical strain 0 0.003 0.549
Number of contacts, M 11410 8330 8210
Number effective particles, N̄ 3700 3550 3660
Avg. coord. no., 2N/M 5.57 4.06 4.01
Avg. eff. coord. no., 2M/N̄ 6.17 4.69 4.49
Void ratio, e 0.509 0.515 0.693

a) |Mean(duroll 2,3 /D/dε)| 0.0009 0.066 0.051
b) Mean(|duroll 2,3 /D/dε|) 0.24 5.05 11.2
c) Std(|duroll 2,3 /D/dε|) 0.15 7.08 10.1

d) |Mean(dθrel, twist · n /dε)| 0.006 0.214 0.147
e) Mean(|dθrel, twist · n /dε|) 0.56 12.2 27.5
f) Std(|dθrel, twist · n /dε|) 0.50 22.4 31.7

g) |Mean(dθrel, roll, 1 × n /D/dε)| 0.003 0.300 0.319
h) Mean(|dθrel, roll, 1 × n /D/dε|) 0.98 20.8 46.2
i) Std(|dθrel, roll, 1 × n /D/dε|) 0.67 31.6 44.3

rates duroll that occur in the tangent planes of the contacts, as well as the twisting rotations
dθrel, twist that occur about the contact normals (Eq. 4). The mean vector values of rolling and
twisting are small at all strains (rows a and d), suggesting that there is no preferred directions of
rolling or twisting. The mean rolling and twisting magnitudes (rows b and e) are modest at zero
strain, large at the peak stress, and extreme at the steady state. In these simulations, no spring
or other restraint was employed to inhibit twisting at the contacts, and the results show that this
form of motion is quite large. It is difficult to compare a translational rate, such as duroll, with
a rotational rate, such as dθrel, twist, but a comparison of the twisting and rolling rotations (rows
d–f and g–i) indicate that rolling may be the dominant form of inter-particle motion, although
twisting is also significant.



4. CONCLUSION
We have summarized three definitions of rolling, and have conducted numerical simulations to
measure their extent during the loading of disk and sphere assemblies. The rolling motions are
very large, particularly at large strains, and rolling appears to spatially isolated and patterned.
Further studies are ongoing, including the simulation of assemblies of non-circular 2D particles
and non-spherical 3D particles, and the results of these studies will be presented at the conference.
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