Multi-scale Phenomena in Granular Materials

Matthew R. Kuhn

University of Portland

Workshop on Multi-scale Modeling of Materials

University of Puget Sound, Tacoma, WA

May 25-30, 2006

(4) (3) (4) (4) (4)

LATEX

< 🗇 ▶

Outline

Introduction & scope

- Scale-dependent phenomena
- Obstacles to multi-scale modeling
- Possible multi-scale models

→ ∃ > < ∃ >

LATEX

< 🗇 ▶

ntroduction 3ehavior domains Macro-scale behavior

Outline

- Introduction & scope
- Introduction
- Behavior domains
- Macro-scale behavior
- Scale-dependent phenomena
- 3 Obstacles to multi-scale modeling
- Possible multi-scale models

< □ > < 同 >

(4) (3) (4) (4) (4)

Introduction Behavior domains Macro-scale behavior

Introduction

Granular materials:

- Assemblies of particles
- Bulk behavior is a consequences of particle interactions
- The "micro-scale" is well defined: individual particles
- The good news: amenable to direct, computational simulation
- The bad news: bulk behavior is complex, with multiple domains of behavior.

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction Behavior domains Macro-scale behavior

Introduction

Granular materials:

- Assemblies of particles
- Bulk behavior is a consequences of particle interactions
- The "micro-scale" is well defined: individual particles
- The good news: amenable to direct, computational simulation
- The bad news: bulk behavior is complex, with multiple domains of behavior.

< □ > < 同 > < 回 > < 回 > < 回 >

LAT_EX

Introduction Behavior domains Macro-scale behavior

Introduction

Granular materials:

- Assemblies of particles
- Bulk behavior is a consequences of particle interactions
- The "micro-scale" is well defined: individual particles
- The good news: amenable to direct, computational simulation
- The bad news: bulk behavior is complex, with multiple domains of behavior.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction Behavior domains Macro-scale behavior

Behavior domains

Domains of granular behavior:

Slow deformation Small-strain behavior Unbonded particles Contact interaction Soft particles Single phase

2D

Rapid flow Large-strain behavior

- or Bonded particles
- or Long-range interaction
- or Hard particles
- or Multiple phases

or 3D

or

or

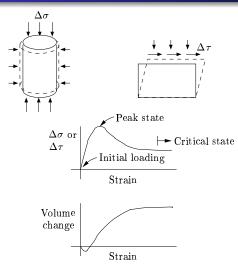
< □ > < 同 > < 回 > < 回 > < 回 >

3

Introduction Behavior domains Macro-scale behavior

Behavior domains

Domains of granular behavior:


Slow deformation Small-strain behavior Unbonded particles Contact interaction Soft particles Single phase 2D or Rapid flow or Large-strain behavior or Bonded particles or Long-range interaction or Hard particles or Multiple phases or 3D

< □ > < 同 > < 回 > < 回 > < 回 >

3

Introduction Behavior domains Macro-scale behavior

Typical macro-scale behavior (slow loading)

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Outline

2 Scale-dependent phenomena

- Force chains Circulation cells Rotation chains
- Micro-bands Dilation clusters
- Crushing Shear bands
- Obstacles to multi-scale modeling
- 4 Possible multi-scale models

< ロ > < 同 > < 回 > < 回 > < 回 >

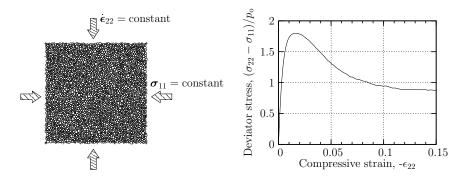
LAT_EX

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Internal behavior — localization

Scale-dependent, localization phenomena

- Force chains
- Circulation cells
- Rotation chains
- Micro-bands
- Dilation clusters
- Size-dependent crushing
- Shear bands and faulting

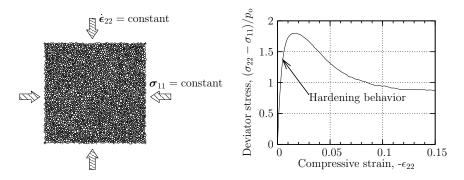

< 回 > < 回 > < 回 >

3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

2D simulations

Biaxial compression of 4096 disks:

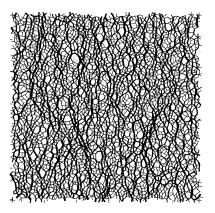

IATEX

ъ

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

2D simulations

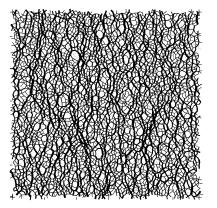
Biaxial compression of 4096 disks:

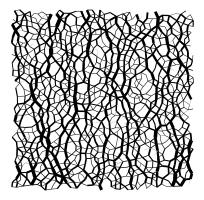

< 口 > < 同

IATEX

3 × 4 3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

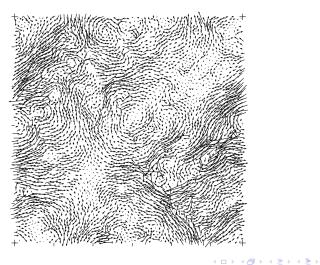

Force chains



・ロト・(部・・モト・モ・・モ

Force chains

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

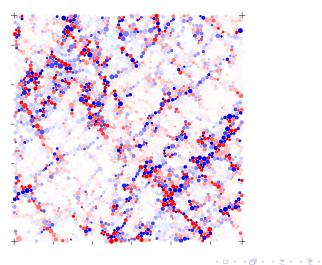


▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Circulation cells



IATEX

э

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

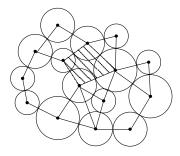
Rotation chains

э

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Internal behavior — localization, cont.

Localization phenomena

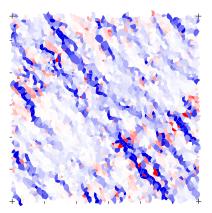

- Force chains
- Circulation cells
- Rotation chains
- Micro-bands
- Dilation clusters
- Size-dependent crushing
- Shear bands and faulting

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Particle graph — 2D

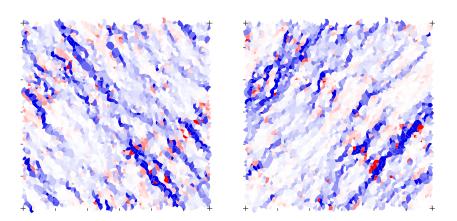


vertices	\rightarrow	particles
edges	\rightarrow	contacts
faces	\rightarrow	void cells

・ロト ・四ト ・ヨト ・ヨト 三日

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Micro-bands

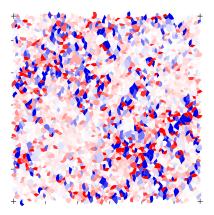

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

IATEX

3

Micro-bands

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands


▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖

IATEX

э

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Dilation clusters

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Internal behavior — localization

Scale-dependent, localization phenomena

- Force chains
- Circulation cells
- Rotation chains
- Micro-bands
- Dilation clusters
- Size-dependent crushing
- Shear bands and faulting

< 回 > < 回 > < 回 >

3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Size-dependent crushing

Uniaxial compression of an embedded agglomerate 1MPa normal pressure

ヘロト 人間 ト イヨト イヨト

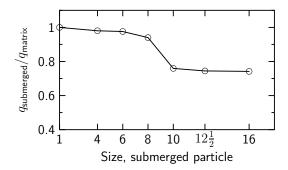
3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Size-dependent crushing

Uniaxial compression of an embedded agglomerate 1MPa normal pressure

Size ratio ≈ 3.5

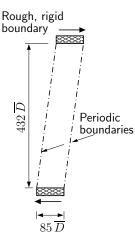

Size ratio \approx 10

(日)

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Size-dependent crushing

Crushing tendency vs. Size of embedded particle

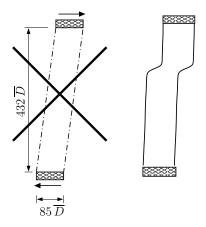

IATEX

э

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Shear band localization

Localization in 40,500 disks - DEM simulation

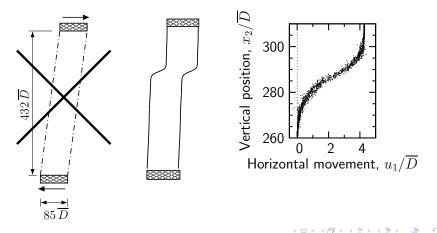

프 🖌 🔺 프 🕨

3

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Shear band localization

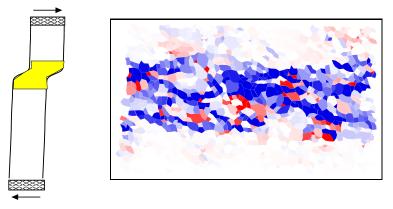
40,500 disks — Localized shearing



< □ > < 同 >

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Shear band localization


40,500 disks — Localized shearing

Force chains — Circulation cells — Rotation chains Micro-bands — Dilation clusters Crushing — Shear bands

Shear band localization

Localization inside of a shear band

< 日 > < 同 > < 回 > < 回 > < □ > <

Outline

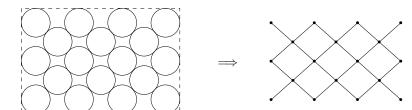
3 Obstacles to multi-scale modeling

- Complex topology Particle rotations
- Heterogeneity
- Misconceptions of friction ٩

(日)

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

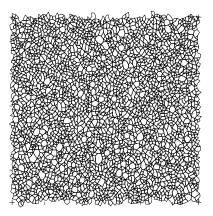
Multi-scale modeling


Obstacles to the transition from micro to larger scales:

- Complex micro-topology
- Particle rotations
- Heterogeneous micro-scale deformation and stress
- Strength heterogeneity
- Misconceptions of friction

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

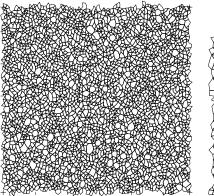
Complex topology — Particle rotations Heterogeneity Misconceptions of friction

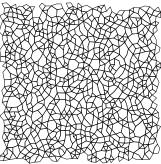

Complex micro-topology

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト … 三

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Complex micro-topology




э

3

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Complex micro-topology

< □ > < 同 >

∃ ▶ .

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Obstacles to multi-scale modeling

Obstacles to the transition from micro to larger scales:

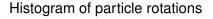
- Complex micro-topology
- Particle rotations
- Heterogeneous micro-scale deformation and stress
- Strength heterogeneity
- Misconceptions of friction

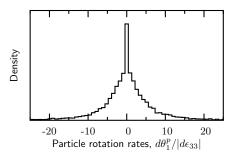
・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Particle rotation complications

Particle rotations complicate the transition from micro to macro:


- 1) Particle rotations are large
- 2) Particle rotations soften/weaken the material response
- 3) Particle rotations are patterned and spatially organized


・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

3

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Particle rotations are large

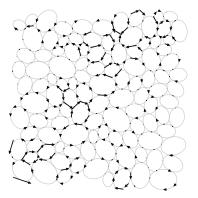
< □ > < 同 >

3

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Particle rotation complications

Particle rotations complicate the transition from micro to macro:

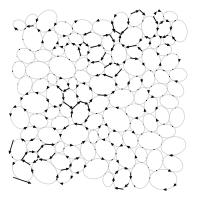

- 1) Particle rotations are large
- 2) Particle rotations soften/weaken the material response
- 3) Particle rotations are patterned and spatially organized

< 日 > < 同 > < 回 > < 回 > < □ > <

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Particle rotations are spatially organized

- 1) Particles tend to "roll"
- 2) Particle rolling is spatially organized


< □ > < 同 >

→ ∃ > < ∃ >

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

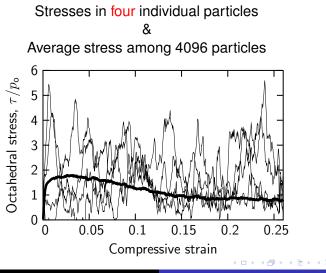
Particle rotations are spatially organized

- 1) Particles tend to "roll"
- 2) Particle rolling is spatially organized

< □ > < 同 > < 回 > <

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

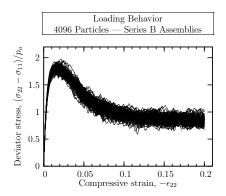
Obstacles to multi-scale modeling


Obstacles to the transition from micro to larger scales:

- Complex micro-topology
- Particle rotations
- Heterogeneous micro-scale deformation and stress
- Strength heterogeneity
- Misconceptions of friction

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

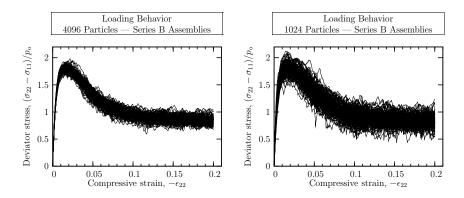
Complex topology — Particle rotations Heterogeneity Misconceptions of friction


Heterogeneous micro-scale stress

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Strength heterogeneity

Tests on 100 different assemblies:



ъ

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Strength heterogeneity

Tests on 100 different assemblies:

IATEX

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Obstacles to multi-scale modeling

Obstacles to the transition from micro to larger scales:

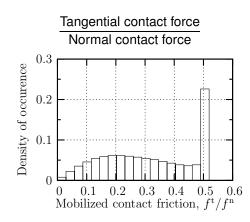
- Complex micro-topology
- Particle rotations
- Heterogeneous micro-scale deformation and stress
- Strength heterogeneity
- Misconceptions of friction

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Friction

Misconceptions of friction


- Only a small minority of particle contacts are "slipping"
- Slipping contacts are spatially dispersed
- Micro- and macro-scale friction are poorly correlated

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Friction

Histogram of contact forces:

IATEX

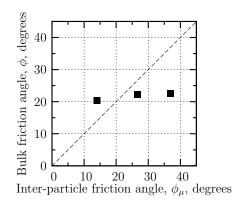
э

3

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Friction

Misconceptions of friction


- Only a small minority of particle contacts are "slipping"
- Slipping contacts are spatially dispersed
- Micro- and macro-scale friction are poorly correlated

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Complex topology — Particle rotations Heterogeneity Misconceptions of friction

Friction

Macro-scale vs. contact friction

э

3

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Outline

Scale-dependent phenomena

Obstacles to multi-scale modeling

4 Possible multi-scale models

- Strain gradient dependent models
- Non-local, integral-type models
- Discrete stiffness models

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Strain gradient dependent models

Simple materials:

$\sigma = f(\epsilon, \text{ material parameters})$

Gradient-dependent materials:

 $\boldsymbol{\sigma} = f(\epsilon, \ \partial \epsilon / \partial \mathbf{x}, \ \partial^2 \epsilon / \partial \mathbf{x}^2, \ \dots, \ \text{material parameters})$

Are granular materials gradient-dependent?

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Strain gradient dependent models

Simple materials:

 $\sigma = f(\epsilon, \text{ material parameters})$

Gradient-dependent materials:

 $\boldsymbol{\sigma} = f(\epsilon, \ \partial \epsilon / \partial \mathbf{x}, \ \partial^2 \epsilon / \partial \mathbf{x}^2, \ \dots, \ \text{material parameters})$

Are granular materials gradient-dependent?

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

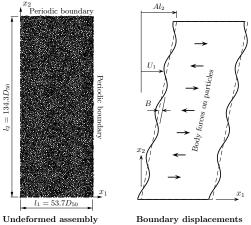
Strain gradient dependent models

Simple materials:

 $\sigma = f(\epsilon, \text{ material parameters})$

Gradient-dependent materials:

 $\boldsymbol{\sigma} = f(\epsilon, \ \partial \epsilon / \partial \mathbf{x}, \ \partial^2 \epsilon / \partial \mathbf{x}^2, \ \dots, \ \text{material parameters})$


Are granular materials gradient-dependent?

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

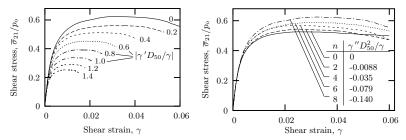
Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Strain gradient dependent models

Experiments to determine strain gradient-dependence

ㅋㅋㅋㅋㅋ

э


Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Strain gradient dependent models

Experimental results:

Effect of the 1st gradient, $d\epsilon_{12}/dx_2$

Effect of the 2nd gradient, $d^2\epsilon_{12}/dx_2^2$

IATEX

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Non-local models

In non-local models, stress at a point depends on an averaged strain $\overline{\epsilon}$ within a region \mathcal{B} around the point:

 $\sigma = f(\overline{\epsilon}, \text{ material parameters})$

where

$$\overline{\epsilon} = \int_{\mathcal{B}} \mathbf{\Phi}(\mathbf{x} - \mathbf{x}') \epsilon(\mathbf{x}') \, dV$$

The weighting kernel Φ is usually a norm $\rightarrow |\mathbf{x} - \mathbf{x}'|$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

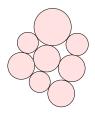
Non-local models

An example non-local model:

$$\overline{\boldsymbol{\epsilon}} = \int_{\mathcal{B}} \left(\frac{1}{\ell \sqrt{\pi}} e^{\left(\frac{|\mathbf{x} - \mathbf{x}'|}{\ell}\right)^2} \right) \boldsymbol{\epsilon}(\mathbf{x}') \, dV$$

Unfortunate deficiencies:

- 1) When applied to experimental results, the length scale ℓ is abnormally small: less than 2 particle diameters.
- 2) Experimental results suggest that the kernel Φ must be asymmetric.


・ロット (雪) (日) (日) 日

LAT_EX

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Discrete stiffness models

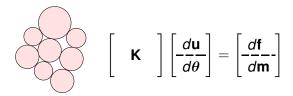
Incremental stiffness of a particle assembly:

Particle movements

> d**u** dθ

External forces & moments

dm


・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

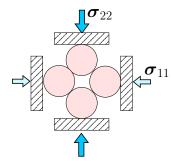
$$\Rightarrow$$
 $\left[-\right]$

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Discrete stiffness models

Incremental stiffness matrix:

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ


IATEX

Scale-dependent phenomena Obstacles to multi-scale modeling Possible multi-scale models

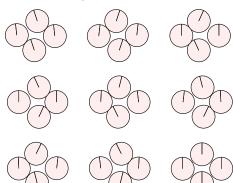
Discrete stiffness models

Discrete stiffness models — example

Instability of 4 particles?

Search for unstable eigenmodes:

$$\lambda < 0 \Rightarrow \delta^2 W < 0$$


< 日 > < 同 > < 回 > < 回 > < □ > <

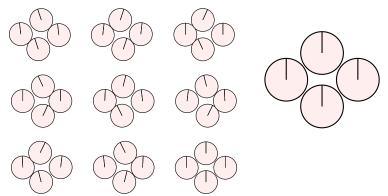
3

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Discrete stiffness models — example

9 Unstable eigenmodes, with $\lambda < 0$:

IATEX


э

∃ ► < ∃</p>

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Discrete stiffness models — example

9 Unstable eigenmodes, with $\lambda < 0$:

< □ > < 同 >

э

Strain gradient dependent models Non-local, integral-type models Discrete stiffness models

Questions?

Kuhn — May 27, 2006 http:// faculty.up.edu / kuhn / papers / Tacoma.pdf

<□> <圖> <圖> < 圖> < 圖> < 圖> < 圖>

IATEX