. Development
of Beam Equations

Introduction

We begin this chapter by developing the stiffness matrix for the bending of a beam
element, the most common of all structural elements as evidenced by its prominence
in buildings, bridges, towers, and many other structures. The beam element is con-
sidered to be straight and to have constant cross-sectional area. We will first derive
the beam element stiffness matrix by using the principles developed for simple
beam theory.

We will then present simple examples to illustrate the assemblage of beam
element stiffness matrices and the solution of beam problems by the direct stiffness
method presented in Chapter 2. The solution of a beam problem illustrates that the
degrees of freedom associated with a node are a transverse displacement and a rota-
tion. We will include the nodal shear forces and bending moments and the resulting
shear force and bending moment diagrams as part of the total solution.

Next, we will discuss procedures for handling distributed loading, because
beams and frames are often subjected to distributed loading as well as concentrated
nodal loading. We will follow the discussion with solutions of beams subjected to dis-
tributed loading and compare a finite element solution to an exact solution for a beam
subjected to a distributed loading.

We will then develop the beam element stiffness matrix for a beam element with
a nodal hinge and illustrate the solution of a beam with an internal hinge.

To further acquaint you with the potential energy approach for developing
stiffness matrices and equations, we will again develop the beam bending element
equations using this approach. We hope to increase your confidence in this approach.
It will be used throughout much of this text to develop stiffness matrices and equations
for more complex elements, such as two-dimensional (plane) stress, axisymmetric, and
three-dimensional stress.

Finally, the Galerkin residual method is applied to derive the beam element
equations.
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152 A 4 Development of Beam Equations
The concepts presented in this chapter are prerequisite to understanding the
concepts for frame analysis presented in Chapter 5.
A 4.1 Beam Stiffness A

In this section, we will derive the stiffness matrix for a simple beam element. A beam is
a long, slender structural member generally subjected to transverse loading that produces
significant bending effects as opposed to twisting or axial effects. This bending deforma-
tion is measured as a transverse displacement and a rotation. Hence, the degrees of
freedom considered per node are a transverse displacement and a rotation (as opposed
to only an axial displacement for the bar element of Chapter 3).

Consider the beam element shown in Figure 4-1. The beam is of length L with
axial local coordinate £ and transverse local coordinate y. The local transverse nodal
displacements are given by d;’s and the rotations by ¢,’s. The local nodal forces are
given by f,’s and the bending moments by ii1’s as shown. We initially neglect all
axial effects.

At all nodes, the following sign conventions are used:

1. Moments are positive in the counterclockwise direction.
2. Rotations are positive in the counterclockwise direction.
3. Forces are positive in the positive j direction.

4. Displacements are positive in the positive j direction.

Figure 4-2 indicates the sign conventions used in simple beam theory for positive
shear forces ¥ and bending moments /7.
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Figure 4-1 Beam element with positive nodal displacements, rotations, forces, and
moments
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Figure 4-2 Beam theory sign conventions for shear forces and bending moments
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{ (a) Undeformed beam under load w(x) (b) Deformed beam due to applied loading
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(c) Differential beam element

! Figure 4-3 Beam under distributed load

Beam Stiffness Matrix Based on Euler-Bernouli Beam Theory
(Considering Bending Deformations Only)

The differential equation governing elementary linear-elastic beam behavior (1] (called
the Euler-Bernoulli beam as derived by Euler and Bernoulli) is based on plane cross
sections perpendicular to the longitudinal centroidal axis of the beam before bending
occurs remaining plane and perpendicular to the longitudinal axis after bend-
ing occurs. This is illustrated in Figure 4-3, where a plane through vertical line a—c¢
(Figure 4-3(a)) is perpendicular to the longitudinal X axis before bending, and this
same plane through o’ ¢’ (rotating through angle ¢ in Figure 4-3(b)) remains perpen-
_-dicular to the bent % axis after bending. This occurs in practice only when a pure cou-
ple or constant moment exists in the beam. However it is a reasonable assumption
that yields equations that quite accurately predict beam behavior for most practical
beams.
The differential equation is derived as follows. Consider the beam shown in
Figure 4- 3 subjected to a distributed loading w(x) (force/length). From force and

3. moment equilibrium of a differential element of the beam, shown in Figure 4-3(c),
§. we have

1 TR =0V —(V+dV)—wX)dx=0 (4.1.1a)
g | Or, simplifying Eq. (4.1.1a), we obtain

*u —wdx—dV =0 or w=—% (4.1.1b)
1 . d

) IM, =0 —de+dM+w(i')dX'<—a:2—A) =0 or V- —A\J (4.1.1c)

The final form of Eq. (4.1.1c), relating the shear force to the bending moment, 1s
obtained by dividing the left equation by d and then taking the limit of the equation
as dx approaches 0. The w(x) term then disappears.
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(a) Portion of deflected curve of beam {b) Radius of deflected curve at 8(x)
Figure 4-4 Deflected curve of beam
Also, the curvature x of the beam is related to the moment by
1 M
K (4.1.1d)

where p is the radius of the deflected curve shown in Figure 4-4b, b is the transverse
displacement function in the j direction (see Figure 4-4a), E is the modulus of elastic-
ity, and [ is the principal moment of inertia about the z axis (where the Z axis is per-
pendicular to the % and J axes). .

The curvature for small slopes ¢ = di/dx is given by

d*p

T

LLF o b

=T (4.1.1e)
Using Eq. (4.1.1¢) in (4.1.1d), we obtain
d*v M
P El i (4.1.1f)
Solving Eq. (4.1.1f) for M and substituting this result into (4.1.1c) and (4.1.1b),
we obtain
d? d* .
For constant EI and only nodal forces and moments, Eq. (4.1.1g) becomes
d*v
EIW—O (4.1.1h)

We will now follow the steps outlined in Chapter 1 to develop the stiffness
matrix and equations for a beam element and then to illustrate complete solutions

for beams.

Step 1 Select the Element Type

Represent the beam by labeling nodes at each end and in general by labeling the ele-
ment number (Figure 4-1).
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Step 2 Select a Displacement Function
Assume the transverse displacement variation through the element length to be
B(%) = a1} + wi? + 3% + ay (4.1.2)

The complete cubic displacement function Eq. (4.1.2) is appropriate because there are
four total degrees of freedom (a transverse displacement c}’,:,, and a small rotation ¢J
at each node). The cubic function also satisfies the basic beam differential equation—
further justifying its selection. In addition, the cubic function also satisfies the condi-
tions of displacement and slope continuity at nodes shared by two elements.

Using the same procedure as described in Section 2.2, we express 9 as a function
of the nodal degrees of freedom c?l.,,, dry, ¢, and ¢, as follows:

13(0) = (?l,l' =,
dio(0 -
fi(\”-) =h=a
S (4.1.3)
(LY =dy =a L’ +aL* +a;L + a,
di(L)

P ¢ =3a\L* + 20, L + a

where ¢ = di/d for the assumed small rotation ¢. Solving Egs. (4.1.3) for a; through
as in terms of the nodal degrees of freedom and substituting into Eq. (4.1.2),
we have

3 - . V- 1., . -
+ [“‘ 12 (diy — dyy) ~ I (24, + ¢2)] X+ ¢, 8+d, (4.14)
In matrix form, we express Eq. (4.1.4) as
b = [N|{d} (4.1.5)
dy,
p=1{% 4.1.6
where {d} =< % (4.1.6a)
dZy .
¢,
and where [N]=[Ni N N3 N4 (4.1.6b)
1 A A2 1 ~ ~2 2 ~
and N = E(Zx3 -3%L+L) N,= F(xJL - 271 + 2L°)
(4.1.7)
1 . o2 1. 9
N3 :E(—2X3+3X-L) N4 :F(XSL—X'LZ)

Ni, N3, N3, and N, are called the shape functions for a beam element. These cubic
shape (or interpolation) functions are known as Hermite cubic interpolation (or cubic
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spline) functions. For the beam element, Ny = 1 when evaluated at node 1l and Ny =0
when evaluated at node 2. Because N, is associated with ¢;, we have, from the second
of Egs. (4.1.7), (dN2/d%) = 1 when evaluated at node 1. Shape functions N3 and Ny
have analogous results for node 2.

Step 3 Define the Strain/Displacement
and Stress/Strain Relationships

Assume the following axial strain/displacement relationship to be valid:

di
(50 === 4.1.8
a(®9) = 72 (4.18)
where ii is the axial displacement function. From the deformed configuration of
the beam shown in Figure 4-5, we relate the axial displacement to the transverse dis-
placement by
dp

= (4.1.9)

i=-y

where we should recall from elementary beam theory [1] the basic assumption
that cross sections of the beam (such as cross section ABCD) that are planar before
bending deformation remain planar after deformation and, in general, rotate through
a small angle (d9/d%). Using Eq. (4.1.9) in Eq. (4.1.8), we obtain

. d*D
el%,J) = - (4.1.10)
y0
D
I
11 A
————————— -4 %1
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Figure 4-5 Beam segment (a) before deformation and (b) after deformation;
(c) angle of rotation of cross section ABCD
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4.1 Beam Stiffness A 1

From elementary beam theory, the bending moment and shear force are related to 1
transverse displacement function. Because we will use these relationships in the deri
tion of the beam element stiffness matrix, we now present them as

d*v d'r

V=FEI— (4.1.1

m(x) = EI PrE P

Step 4 Derive the Element Stiffness Matrix and Equations

First, derive the element stiffness matrix and equations using a direct equilibriu
approach. We now relate the nodal and beam theory sign conventions for shear forc

and bending moments (Figures 4—1 and 4-2), along with Egs. (4.1.4) and (4.1.11
to obtain

s d*s(0) EI . . . .
S =V = El— === (12d,, + 6L, — 12d,, + 6L4),)
iy = —1i = —EJ"L@ - (6Ld), + 4L}, — 6Lds, + 2L,
dax? L3 : - (4.1.1;
. d*s(L) EI, __. A - - o
Sy ==V = —El—% = = (= 124y, — 6L, + 124, — 6Lg))
MWy = it = El% = g (6Ld,, +2L°¢, — 6Lddy, + 4L’ 4,)

where the minus signs in the second and third of Eqs. (4.1.12) are the result of oppc
site nodal and beam theory positive bending moment conventions at node | an
opposite nodal and beam theory positive shear force conventions at node 2 as see
by comparing Figures 4-1 and 4-2. Equations (4.1.12) relate the nodal forces to th
nodal displacements. In matrix form, Egs. (4.1.12) become

£ 12 6L -12 6L (ad,
i\ _EI| 6L 4L —6L  2L|] §, (@113
le L3 —-12 —eL 12 —6L (}zl T
115 6L 2L —6L 4L ¢;,
where the stiffness matrix is then
12 6L -12 6L
-~ EI 6L 4L —6L 2L
== 4.1.14
k L3 | —-12 —6L 12 —6L (

6L 2L —6L 41

Equation (4.1.13) indicates that k relates transverse forces and bending moments tc
transverse displacements and rotations, whereas axial effects have been neglected.

In the beam element stiffness matrix (Eq. (4.1.14) derived in this section, it i
assumed that the beam is long and slender; that is, the length, L, to depth, &, dimen-
sion ratio of the beam is large. In this case, the deflection due to bending that is pre-
dicted by using the stiffness matrix from Eq. (4.1.14) is quite adequate. However,
for short, deep beams the transverse shear deformation can be significant and can
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have the same order of magnitude contribution to the total deformation of the beam.
This is seen by the expressions for the bending and shear contributions to the deflec-
tion of a beam, where the bending contribution is of order (L/h)3, whereas the shear
contribution is only of order (L/h). A general rule for rectangular cross-section
beams, is that for a length at least eight times the depth, the transverse shear deflection
is less than five percent of the bending deflection [4]. Castigliano’s method for finding
beam and frame deflections is a convenient way to include the effects of the transverse
shear term as shown in [4]. The derivation of the stiffness matrix for a beam including
the transverse shear deformation contribution is given in a number of references [5-8].
The inclusion of the shear deformation in beam theory with application to vibration
problems was developed by Timoshenko and is known as the Timoshenko beam [9-10].

Beam Stiffness Matrix Based on Timoshenko Beam Theory
(Including Transverse Shear Deformation)

The shear deformation beam theory is derived as follows. Instead of plane sections
remaining plane after bending occurs as shown previously in Figure 4-5, the
shear deformation (deformation due to the shear force V') is now included. Referring
to Figure 4-6, we observe a section of a beam of differential length dx with the cross
section assumed to remain plane but no longer perpendicular to the neutral axis

dx

6y
v $(®)
\ M
M L\ 7% v M+
() dx
N X
(a)
1,
dx
Element 2
UNC
Element 1 5
dﬁ'_,“) (162("
dx dx

(b}

Figure 4-6 (a) Element of Timoshenko beam showing shear deformation. Cross
sections are no longer perpendicular to the neutral axis line. (b) Two beam elements
meeting at node 2
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