STRAIN ENERGY DENSITY
(strain energy per unit volume)

For ductile metals and alloys, according to the Maximum Shear Stress failure theory (aka
“Tresca”) the only factor that affects dislocation slip is the maximum shear stress in the material.
This is really a 1-dimensional explanation; a single parameter (maximum shear stress) is the only
thing that causes yielding. The Tresca theory does work well in a 3-dimensional world, but none
the less, a slight improvement upon Tresca’s theory is warranted. Yielding (dislocation slip) is
somewhat better explained (i.e. it is better supported by empirical data) by considering strain
energy. So here we go....

If we apply a load to a material it will deform. The units of energy are force*distance, so when a
load is applied and the material deforms, we are putting energy into the material. This energy is
referred to as “strain energy.” We prefer to normalize strain energy by unit volume, and when
we do so, this is referred to as strain energy density. The area under a stress-strain curve is the
energy per unit volume; stress*strain has units of force per area such as N/mm? which is the
same as energy per unit volume N-mm/mm?>. We will be assuming linear elastic material only.
Most metals and alloys are linear elastic prior to the onset of plastic deformation, so this is
generally a valid assumption.

The strain energy is composed of two distinct forms — volume changes and distortion. Normal

strains cause a change in volume, shear strain cause distortions (angular changes). The total
stain energy is the sum of distortion energy and volume energy:

Utotal = Udistortion + Uvolume,
Where:
Utotal = total strain energy
Ulistortion = strain energy due to distortion
Uvolume = strain energy due to volume change (aka hydrostatic strain energy)

We will develop equations for total strain energy (Usoal) and volume energy (Uyolume), and
determine the distortion energy (which is really what we are interested in) from:

Uldistortion = Utotal — Uvolume

Remember, for uniaxial loading, the strain energy per unit volume is the area under the stress-
strain curve:

Utotal = 2 €101

(note, shear stresses do not appear in these equations since we are dealing with principal planes)
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For general (3D) loading, the total strain energy is given in terms of principal stresses and
strains:

Utotal = Y2 [€101 + €202 + €303] (a)

Using Hooke’s law ¢/ = [o1—v(c2 + 03)] /E, &2= ... etc. the total strain energy equation (a)
can be written in terms of stress only:

Usotal = {112E} { 61> + 62> + 63> — 2v (6263 + G1 63 + G1 62)} (b)
Remember that hydrostatic stress causes volume change and that it is invariant (hydrostatic stress
is a scalar — it is not directionally dependent — therefore it does not vary depending upon axis

orientation). “Invariant” means “does not vary.” The hydrostatic stress can be determined from
the average magnitudes of the three principal stresses:

Ghydrostatic = Oave = ((71 + 02+ O3 ) /3 (C)
Ghydrostatic 1S the stress condition that causes volume change. It is invariant. For a moment, let’s
consider it alone. Let’s consider a loading condition that was purely hydrostatic with magnitude
of Ghydrostatic as calculated in equation (c). If the only stress in this material is Ghydrostatic then for

this special loading condition the 3 principal stresses would be equal to Ghydrostatic (01 = 02 = 03 =
Ohydrostatic ). Equation (b) would become:

U= {(1-2v )/6E} {Ghyd®> + Ghyd> + Ghyd > + 2(Chyd Chyd + Ghyd Ghyd + Ghyd Chyd) }

U= {3(1-2v )/ 2E} Ghyd* (d)
For purely hydrostatic loading condition that we assumed in equation (d), there is no distortion
energy (Udistortion = 0) S0 Utotal = Uvolume. But what about our part which may have distortion
energy? Regardless of the existence of distortion energy or not, equation (d) — being based on
the invariant hydrostatic stress — is the energy due to volume change, Uvolume:

Uvolume = {3(1'2V ) / 2E} Ghyd2 (e)
Substituting equation (c) into (e) gives:

Uvolume = {3(1'2V ) / 2E} Ghyd2 = {3(1'2V ) / ZE} {(Gl + G2 + G3 ) / 3}2

= {(1-2v)/6E} { 61> + 62> + 63> + 26263 + 261 63 + 261 G2 } H

To determine the strain energy due to distortion only (not volume change) we subtract equation
(f) from equation (b):

Uldistortion = Utotal — Uvolume =
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Udistortion = {1/2E} { 61> + 622 +[] 63 — 2v (6203 + G1 63 + G1 52)} —
{(1-2v)/6E} { 61> + 62° + 63> + 20203 + 261 63 + 261 G2 } (2)

Simplifying equation (g) gives:
Utdistortion = {(1+ v)/3E} [ { (61- 62)? + (02- 63)* + (03- 61)*}/2 ] (h)

Okay, so what? Remember, the Maximum Shear Stress theory works pretty well in predicting
yielding of ductile metals and alloys, but we are trying to improve upon it a bit. Why does
Maximum Shear Stress theory work well? Because it is shear stress that causes dislocation slip
(aka plastic deformation). What sort of strain do shear stresses produce? They produce shear
strains (y = 1/ G ); in other words, distortion. What is the equation for maximum shear stress? It
is: Tmax = (01- 63) / 2. It is the difference between principal stress divided by 2. What do we see
in equation (h)? The differences between all principal stress divided by 2. Equation (h)
combines the maximum shear stress in each of the 3 principal planes into a single equation. It
should not be surprising that “distortion strain energy” is related to maximum shear stress. Shear
stress cause shear strain, which is distortion.

The Distortion Energy failure theory (which we will discuss next) is a bit more mathematically
sophisticated than the Maximum Shear Stress failure theory, but is really very similar. Rather
than considering only the maximum shear stress at a point, it combines the each of maximum
shear stresses at a point on the 3 principal planes. These two theories give very similar results,
but Distortion Energy does match empirical data better.

DISTORTION ENERGY FAILURE THEORY (VON MISES FAILURE THEORY):
Yielding is predicted to occur when the distortion energy in a part equals or
exceeds the distortion energy in a uniaxial loaded tensile bar at the onset of
yielding.
Note on nomenclature: in machine design, stress related material properties are expressed as S
and o is used to express stresses. Yield strength is expresses as Sys rather than as cys (exact

same thing, just different nomenclature).

For uniaxial tensile loading (as is used to create a stress-strain curve), 2 = 63 = 0, and at the
onset of yielding, F/A = o1 = Sys (at onset of yielding only).

1

Yield point
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Therefore, for uniaxial loading at the onset of yielding (the stress shown on the stress-strain
curve that we call “yield strength”) we substituting Sys for o1 and 62 = 63 = 0 into equation (h):

Uldistortion = {(1+ V)/3E} Sys2 (1)
The Distortion Energy Theory states that when the distortion energy in a material equals or

exceeds the distortion energy present at the onset of yielding in uniaxial loading tensile test for
that material, the part will experience plastic deformation (i.e. it will yield):

Uldistortion, part = Udistortion, uniaxial test yielding occurs ()
Equating the distortion energy in general 3-dimensional stress condition (equation (h)) and
distortion energy in simple uniaxial loading (equation (i)); from equations (h) and (i) into
equation (j):

{(1+v)/3E} { (c1- G2)* + (02- 63)* + (53- G1)*}/2 > {(1+ Vv)/3E}Sys (k)
Simplifying equation (k) gives the von Mises failure criterion:

If { (61- 02)* + (02-63)* + (63-01)*} / 2 > Sy’ then yielding will occur )

We define the von Mises stress, a.k.a. effective stress, as:

c = Oeffective — Oeff = [{ ((51 - 62)2 + (02 - (53)2 + (03 _ Gl)2}/2]1/2 (1’1’1)

Yielding occurs when the von Mises stress (aka effective stress) in a part becomes greater than
the yield strength:

G’ = Oeffective > Sys (1’1)

Equations (I) and (n) are the same equation. They are both the von Mises theory (distortion
energy theory) in mathematical form.

What have we done? Principal stresses lie along specific orthogonal directions and therefore are
not scalar entities. However, what we have done is to use their magnitude in a scalar equation to
express the distortion energy. We have also combined the principal stresses in another equation
to define the so-called effective stress (aka von Mises stress). The effective stress is a scalar
quantity (no direction associated with it) that is related to the yield strength (also a scalar
quantity) to predict the complex phenomena of yielding. It was a long way to go, but are able to
relate complex loading conditions to a simple material property in order to predict yielding
(failure) of our complex loaded part! That’s impressive!
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von Mises (Distortion Energy theory) and Tresca (Max Shear Stress theory) yield surfaces.

For plane stress (let 53=0 and 6 1> ©2) the circle passing through the cylindrical shape (von
Mises) becomes an ellipse and the hexagon (Tresca) becomes an elongated hexagon:
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von Mises (Distortion Energy theory) and Tresca (Max Shear Stress theory) failure surfaces for
plane stress (let 63=0 and ¢ 1> 52).
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HISTORICAL NOTES
(Wikipedia): Henri Tresca (October 12, 1814 — June 21, 1885) was a French mechanical
engineer, and a professor at the Conservatoire National des Arts et Métiers in Paris.

Maximum Shear Stress theory was developed by Tresca in 1868.

Tresca was also among the designers of the prototype meter bar (shown below) that served as the
first standard of length for the metric system. This was a very challenging “strength of
materials” problem. The bar is carefully designed to minimally “sag” when supported at its
ends, and it is designed to easily be measured at its neutral axis (no change in length at NA).

History of Distortion Energy Failure Theory, aka von Mises, aka von Mises-Hencky, aka
Huber-Hencky-von Mises (http://www.continuummechanics.org/cm/vonmisesstress.html)

The defining equation for the von Mises stress was first proposed by Huber [1] in 1904, but
apparently received little attention until von Mises [2] proposed it again in 1913. However,
Huber and von Mises' definition was little more than a math equation without physical
interpretation until 1924 when Hencky [3] recognized that it is actually related to deviatoric
strain energy.

In 1931, Taylor and Quinney [4] published results of tests on copper, aluminum, and mild steel
demonstrating that the von Mises stress is a more accurate predictor of the onset of metal
yielding than the maximum shear stress criterion, which had been proposed by Tresca [5] in
1864 and was the best predictor of metal yielding to date. Today, the von Mises stress is
sometimes referred to as the Huber-Mises stress in recognition of Huber's contribution to its
development. It is also called Mises effective stress and simply effective stress.
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