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ME304 Finite Element Analysis 
Stress, Strain, Hooke’s Law 

 
Compatibility 
One of the mathematical requirements for continuum mechanics is “compatibility”.  Compatibility 
simply means there are no “holes or gaps” in the material.  The for plane strain, three strains are 
defined by only two displacements; therefore, the strains are not independent of each other!  For plane 
strain, the compatibility condition is: 

d2εxx/dy2 + d2εyy/dx2 - d2εxy/dxdy = 0 

To gain further insight into the meaning of compatibility, imagine an elastic body subdivided into a 
number of small cubic elements prior to deformation.  These cubes may, upon loading, be deformed 
into a system of parallelepipeds.  The deformed system will, in general, be impossible to arrange in 
such a way as to compose a continuous body unless the components of strain satisfy the equations of 
compatibility.  Ugural and Fenster, “Advanced Strengths and Applied Elasticity”, Elsevier, pg. 40 

 
Matrices! 
Scalars are zero-th order tensors – a magnitude.  
Vectors are first order tensors (magnitude and direction which can be represented by a column or row 

matrix – i.e. one dimensional matrix).   
Stress and strain are second order tensors (“2 dimensional” matrix – square) 
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Where σxx is the normal stress (acting on the x-plane) in the x-direction (this is also commonly labeled as 
σx). σxy is the shear stress on the x-plane in the y-direction (also commonly labeled as τxy), etc.  For 
isotropic materials, the matric is symmetric (σxy =σyx). 
 
 Transformation Equations for Plane Stress (see strength of materials text for details): 
 
 
 
 
 
 

 
 
σx’ = ½ (σx + σy) + { ½ (σx – σy) cos(2θ) + τxy sin(2θ) } 
σy’ = ½ (σx + σy) – { ½ (σx – σy) cos(2θ) + τxy sin(2θ) } Equations 1 
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τx’y’ = ½ (σx – σy) sin(2θ) + τxy cos(2θ) 
 
We can see that the average normal stress is constant regardless of orientation: 

σave =  ½ (σx’ + σy’) = ½ (σx + σy)    therefore, the average normal stress is said to be invariant. 
 
Let’s consider the second portion of the transformation equations for normal stresses: 

{ ½ (σx – σy) cos(2θ) + τxy sin(2θ) } 
 
If we let R = { [½ (σx – σy)]2 + [τxy]2 }1/2  we can create a 
special triangle – one where the angle is specifically 
defined as 2θp 
 

2θp = tan-1(2τxy/(σx – σy) 
R cos(2θp) = ½ (σx – σy) 
R sin(2θp) = τxy 

 
Substituting these into Equations 1 and setting θ = θp gives us equations that can be used to create a 
circle (Mohr’s circle): 

σx’ = σave + R {cos(2θp) + sin(2θp) } 
σy’ = σave – R {cos(2pθ) + sin(2pθ) } Equations 2 

 
Three-Dimensional Stress-Strain (non-plane stress and non-plane strain) 
If we know the three principal stresses, 3D Mohr’s circle is trivial.  However, determining the principal 
stresses from a general 3D loading condition is more complex.  Stress is a square matrix (3X3) and the 
eigenvalues are the principal stresses and the eigenvectors are the principal directions (see any linear 
algebra text for further discussion of eigenvalues).  The principal stresses are invariant (see comment 
below for what this means). 
 

det[σij - I σp] = 0  (σij is a 3X3 matrix, I is the 3X3 identity matrix, σp is a scalar (eigenvalue)) 
 
expanding this gives: 

σp
3 – I1σp

2 + I2σp – I3 = 0   (the 3 roots of this equation are the 3 principal stresses) 
Where: 

I1 = σx+ σy+ σz 
I2 = σxσy + σxσz + σyσz – τxy

2 – τxz
2 –τyz

2  
I3 = det[σ]  

REF: Ugural and Fenster, “Advanced Strengths and Applied Elasticity”, Elsevier, pg. 20 
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The I’s are invariant: No matter what coordinate transformation you apply to the stress tensor, its 
principal stress must be the same three values, and the principal directions must be the same three 
vectors. And the only way for this to happen in the above equation is for the equation itself to always be 
the same, no matter the transformation. This means that the combinations of stress components, which 
serve as coefficients of the eigenvalues (σp), must be invariant under coordinate transformations. Their 
values must not change. And that's why they are called invariants.  
REF: http://www.continuummechanics.org/principalstress.html 
 

Hooke’s Law 
Hooke’s law for 1-dimensional loading (aka, uni-axial loading) is very familiar:  σ = E ε  or ε = E-1 σ 
 
Hooke’s law for bi-directional (2-dimensional) loading (plane stress, σz=0) is relatively easily developed 
from 1D if we understand Poisson’s ratio. 
 
 
 
 
 
 
 
  
 

If σy was zero, the strain in the x-direction due to stress in the x-direction alone would be:   

εx = (1/E) (σx) …this is the strain in the x-direction due to a stress in the x-direction. 

If σx was zero, the strain in the x-direction due to stress in the y-direction alone would be caused by 
“Poisson’s effect.” By definition of Poisson's ratio (valid for uniaxial loading): ν = -εtrans/εaxial; therefor: 

εx = - ν εy = -ν (1/E) (σy) …this is the strain in the x-direction due to a stress in the y-direction. 

Due to linearity, we can add these.  The strain in the x-direction due to the stresses in both the x and y 
directions: 

εx = (1/E) { σx - ν σy }    

Similarly, we can determine the strain in the y-direction due to stresses in both x and y directions: 

εy = (1/E) { σy - ν σx }    

The stresses in the x-y plane will result in strain in the z-direction:  

εz = (-ν/E) { σx + σy }    
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Notice, for plane stress (σz =0) if σx = -σy, then εz=0.  If there are no applied shear stresses in the z-
direction (which would produce shear strains in the z-direction), then both plane stress and plane strain 
exist.  There is one common loading condition where this is true (hint, draw Mohr’s circle for torsion 
loading…that will show you that σx = -σy and at least on on the surface of the shaft, it is plane 
stress…and plane strain). 

Simultaneously solving the above equations in terms of stress (σx, σy) results in the following.  Note that 
the strain in the z-direction (the direction of zero stress) has no influence on the stresses in any 
direction. 

σx = {E / (1 – ν2 )} {εx + νεy) 

σy = {E / (1 – ν2 )} {εy + νεx) 

σz = 0  (due to plane stress) 

 

Three dimensional (non-plane stress) Hooke’s law. 

 

 

 

 

Hooke’s law in 3-dimensions, given the stresses the strains are determined: 

εx = (1/E) { σx - ν  (σy  + σz ) }     

εy = (1/E) { σy - ν  (σx + σz ) }  

εz = (1/E) { σz - ν  (σx  + σy ) } 

Solving these in terms of stress (σx, σy, σz) results in following: 

σx = {E / [( 1+ ν )( 1 – 2ν ])} { (1 – ν) εx + ν (εy + εz) } 

σy = {E / [( 1+ ν )( 1 – 2ν ])} { (1 – ν) εy + ν (εx + εz) } 

σz = {E / [( 1+ ν )( 1 – 2ν ])} { (1 – ν) εz + ν (εx + εy) } 

What about shear stress and shear strain?  The shear components are independent of the normal 
components – shear does not affect normal, and normal does not affect shear.   

γxy = (1/G) τxy 
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Note, τxy is different nomenclature, but exactly the same thing as σxy.  However, as discussed previously, 
γxy = 2 εxy (both are shear strain, but based on how they are defined they differ by a factor of 2). 

And τxy = (G) γxy 

The same relationship exists for all components of shear stress and shear strain (γxz = (1/G) τxz , τxz = (G) 
γxz , etc.) 

 

Hooke’s law expressed as matrices: 

σ = E ε  or ε = E-1 σ 

If stress (σ) and strain (ε) are expressed as 3X3 matrices, the stiffness matrix (“E” or “E-1”) would also 
need to also be a 3X3.  Yet based on the above Hooke’s law equations, it can quickly be seen that this 
won’t work!  Why not?  
Both stress and strain are second order tensors which mean that we can legitimately express them as 
“2-dimensional” (square 3X3) matrices.  However, the elastic stiffness matrix (E) is a 4th order tensor; 
therefore, it would require a “4-dimensional” matrix --- we need “4-dimensional” paper and a “4-
dimensional” mind to properly express it.  So matrices, in this form, do not work – we need to use tensor 
form of matrices.  As a tensor, we express both stress and strain as 6X1 matrices (even though stress 
and strain are NOT vectors!), and “stiffness” as a 6X6 matrix. 
 

 

 

 


