Nomenclature	Arrow convention
External forces are applied to nodes only (use capital letters). F_i is the external force applied to node i.	
Internal forces act on nodes or elements (equal and opposite). $f_i^{(j)}$ is the internal force acting on node i with respect to element j.	
$f_i^{(j)}$ internal force acting on a node	•
$f_i^{(j)}$ internal force acting on an element (equal and opposite to $f_i^{(j)}$ on the node)	
u _i is the displacement of node i	
k _i is the stiffness of element i.	
δ_{i} is the elongation (change in length) of the element	

[&]quot;element" and "spring" are synonymous for 1-dimensional FEA.

GIVEN: spring attached on one end with a force on the other end.

FBD's of the spring:

Equilibrium:

Node 1:
$$\Sigma F = F_1 - f_1^{(1)} = 0$$
, therefore $F_1 = f_1^{(1)}$

Node 2:
$$F_2 = f_2^{(1)}$$

Element 1 (the spring): $\Sigma F = f_1^{(1)} + f_2^{(1)} = 0$, therefore $f_1^{(1)} = -f_2^{(1)}$

$$\delta_1 = u_2 - u_1$$

Create system of equations:

$$f_2^{(1)} = k_1 \delta_1 = k_1 (u_2 - u_1) = -k_1 u_1 + k_1 u_2$$

$$f_1^{(1)} = -f_2^{(1)} = -k_1\delta_1 = k_1(u_1 - u_2) = k_1u_1 - k_1u_2$$

Assemble matrices:

$$\begin{cases} f_1^{(1)} \\ f_2^{(1)} \end{cases} = \begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases}$$

This is the "local" equation (for a single element). F = ku

Two springs...I mean, two elements: ready, set go....

Two forces are applied – one at the right end, one in between the two springs, plus the reaction at the wall. So 3 total applied forces:

Equilibrium:

Node 1: $F_1 = f_1^{(1)}$

Node 2: $F_2 = f_2^{(1)} + f_2^{(2)}$

Node 2: $F_3 = f_3^{(2)}$

Element 1: $f_1^{(1)} = -f_2^{(1)}$

Element 2: $f_2^{(2)} = -f_3^{(2)}$

Create system of equations:

$$F_1 = f_1^{(1)} = -f_2^{(1)} = -k_1 (u_2 - u_1) = k_1 u_1 - k_1 u_2$$

$$F_3 = f_3^{(2)} = k_2 (u_3 - u_2) = -k_2 u_2 + k_2 u_3$$

$$F_2 = f_2^{(1)} + f_2^{(2)} = -f_1^{(1)} - f_3^{(2)} = -(k_1u_1 - k_1u_2) - (-k_2u_2 + k_2u_3) = -k_1u_1 + (k_1 + k_2)u_2 - k_2u_3$$

Aligning the displacement (u) terms:

	u ₁	u ₂	u ₃
F ₁	k_1	- k ₁	0
F ₂	- k ₁	$k_1 + k_2$	- k ₂
F ₃	0	- k ₂	k ₂

Assembling the three equations:

$$\begin{cases} F_1 \\ F_2 \\ F_3 \end{cases} = \begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases} \ = \ \mathbf{F} = \mathbf{K} \mathbf{u}$$

F is the Global Force Matrix, **K** is the Global Stiffness Matrix, **u** is the Global Displacement Matrix.

Just for fun, here are the individual elements' equations, which can be added together to create the Global equation above.

Element 1:

$$\begin{pmatrix} f_1^{(1)} \\ f_2^{(1)} \end{pmatrix} = \begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

Element 2:

$$\begin{pmatrix} f_2^{(2)} \\ f_3^{(2)} \end{pmatrix} = \begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{pmatrix} u_2 \\ u_3 \end{pmatrix}$$