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Chapter 2

Fundamentals of the Mechanical

Behavior of Materials

Questions

2.1

2.2

2.3

Can you calculate the percent elongation of ma-
terials based only on the information given in
Fig. 2.67 Explain.

Recall that the percent elongation is defined by
Eg. (2.6) on p. 33 and depends on the original
gage length (I,) of the specimen. From Fig. 2.6
on p. 37 only the necking strain (true and engi-
neering) and true fracture strain can be deter-
mined. Thus, we cannot calculate the percent
elongation of the specimen; also, note that the
elongation is a function of gage length and in-
creases with gage length.

Explain if it is possible for the curves in Fig. 2.4
to reach 0% elongation as the gage length is in-
creased further.

The percent elongation of the specimen is a
function of the initial and final gage lengths.
When the specimen is being pulled, regardless
of the original gage length, it will elongate uni-
formly (and permaunently) until necking begins.
Therefore, the specimen will always have a cer-
tain finite elongation. However, note that as the
specimen’s gage length is increased, the contri-
bution of localized elongation (that is, necking)
will decrease, but the total elongation will not
approach zero.

Explain why the difference between engineering
strain and true strain becomes larger as strain

2.4

2.5

increases. Is this phenomenon true for both ten-
sile and compressive strains? Explain.

The difference between the engineering and true
strains becomes larger because of the way the
strains are defined, respectively, as can be seen
by inspecting Egs. (2.1) on p. 30 and (2.9) on
p. 35. This is true for both tensile and com-
pressive strains.

Using the same scale for stress, we note that the
tensile true-stress-true-strain curve is higher
than the engineering stress-strain curve. Ex-
plain whether this condition also holds for a
compression test.

During a compression test, the cross-sectional
area of the specimen increases as the specimen
height decreases (because of volume constancy)
as the load is increased. Since true stress is de-
fined as ratio of the load to the instantaneous
cross-sectional area of the specimen, the true
stress in compression will be lower than the en-
gineering stress for a given load, assuming that
friction between the platens and the specimen
is negligible.

Which of the two tests, tension or compression,
requires a higher capacity testing machine than
the other? Explain.

The compression test requires a higher capacity
machine because the cross-sectional area of the
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specimen increases during the test, which is the
opposite of a tension test. The increase in area
requires a load higher than that for the ten-
sion test to achieve the same stress level. Fur-
thermore, note that compression-test specimens
generally have a larger original cross-sectional
area than those for tension tests, thus requiring
higher forces.

Explain how the modulus of resilience of a ma-
terial changes, if at all, as it is strained: (1) for
an elastic, perfectly plastic material, and (2) for
an elastic, linearly strain-hardening material.

If you pull and break a tension-test specimen
rapidly, where would the temperature be the
highest? Explain why.

Since temperature rise is due to the work input,
the temperature will be highest in the necked
region because that is where the strain, hence
the energy dissipated per unit volume in plastic
deformation, is highest.

Comment on the temperature distribution if the
specimen in Question 2.7 is pulled very slowly.

If the specimen is pulled very slowly, the tem-
perature generated will be dissipated through-
out the specimen and to the environment.
Thus, there will be no appreciable temperature
rise anywhere, particularly with materials with
high thermal conductivity.

In a tension test, the area under the true-stress-
true-strain curve is the work done per unit vol-
ume (the specific work). We also know that
the area under the load-elongation curve rep-
resents the work done on the specimen. If you
divide this latter work by the volume of the
specimen between the gage marks, you will de-
termine the work done per unit volume (assum-
ing that all deformation is confined between
the gage marks). Will this specific work be
the same as the area under the true-stress-true-
strain curve? Explain. Will your answer be the
same for any value of strain? Explain.

If we divide the work done by the total volume
of the specimen between the gage lengths, we
obtain the average specific work throughout the
specimen. However, the area under the true

2.10

2.11

2.12

2.13

stress-true strain curve represents the specific
work done at the necked (and fractured) region
in the specimen where the strain is a maximum.
Thus, the answers will be different. However,
up to the onset of necking (instability), the spe-
cific work calculated will be the same. This is
because the strain is uniform throughout the
specimen until necking begins.

The note at the bottom of Table 2.5 states that
as temperature increases, C decreases and m
increases. Explain why.

The value of C in Table 2.5 on p. 43 decreases
with temperature because it is a measure of the
strength of the material. The value of m in-
creases with temperature because the material
becomes more strain-rate sensitive, due to the
fact that the higher the strain rate, the less time
the material has to recover and recrystallize,
hence its strength increases.

You are given the K and n values of two dif-
ferent materials. Is this information sufficient
to determine which material is tougher? If not,
what additional information do you need, and
why?

Although the K and n values may give a good
estimate of toughness, the true fracture stress
and the true strain at fracture are required for
accurate calculation of toughness. The modu-
lus of elasticity and yield stress would provide
information about the arca under the elastic re-
gion; however, this region is very small and is
thus usually negligible with respect to the rest
of the stress-strain curve.

Modify the curves in Fig. 2.7 to indicate the
effects of temperature. Explain the reasons for
your changes.

These modifications can be made by lowering
the slope of the elastic region and lowering the
general height of the curves. See, for example,
Fig. 2.10 on p. 42.

Using a specific example, show why the defor-
mation rate, say in m/s, and the true strain rate
are not the same.

The deformation rate is the quantity v in
Egs. (2.14), (2.15), (2.17), and (2.18) on pp. 41-
46. Thus, when v is held constant during de-
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formation (hence a constant deformation rate),
the true strain rate will vary, whereas the engi-
neering strain rate will remain constant. Hence,
the two quantities are not the same.

It has been stated that the higher the value of
m, the more diffuse the neck is, and likewise,
the lower the value of m, the more localized the
neck is. Explain the reason for this behavior.

As discussed in Section 2.2.7 starting on p. 41,
with high m values, the material stretches to
a greater length before it fails; this behavior
is an indication that necking is delayed with
increasing m. When necking is about to be-
gin, the necking region’s strength with respect
to the rest of the specimen increases, due to
strain hardening. However, the strain rate in
the necking region is also higher than in the rest
of the specimen, because the material is elon-
gating faster there. Since the material in the
necked region becomes stronger as it is strained
at a higher rate, the region exhibits a greater re-
sistance to necking. The increase in resistance
to necking thus depends on the magnitude of
m. As the tension test progresses, necking be-
comes more diffuse, and the specimen becomes
longer before fracture; hence, total elongation
increases with increasing values of m (Fig. 2.13
on p. 45). As expected, the elongation after
necking (postuniform elongation) also increases
with increasimg m. It has been observed that
the value of m decreases with metals of increas-
ing strength.

Explain why materials with high m values (such
as hot glass and silly putty) when stretched
slowly, undergo large elongations before failure.
Consider events taking place in the necked re-
gion of the specinien.

The answer is similar to Answer 2.14 above.

Assume that you are running four-point bend-
ing tests on a number of identical specimens of
the same length and cross-section, but with in-
creasing distance between the upper points of
loading (see Fig. 2.21b). What changes, if any,
would you expect in the test results? Explain.

As the distance between the upper points of
loading in Fig. 2.21b on p. 51 increases, the
magnitude of the bending moment decreases.
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2.18

2.19

2.20

However, the volume of material subjected to
the maximum bending moment (hence to max-
imum stress) increases. Thus, the probability
of failure in the four-point test increases as this
distance increases.

Would Eq. (2.10) hold true in the elastic range?
Explain.

Note that this equation is based on volume con-
stancy, i.e., A,l, = Al. We know, however, that
because the Poisson’s ratio v is less than 0.5 in
the elastic range, the vohume is not constant in
a tension test; see Eq. (2.47) on p. 69. There-
fore, the expression is not valid in the elastic
range.

Why have different types of hardness tests been
developed? How would you measure the hard-
ness of a very large object?

There are several basic reasons: (a) The overall
hardness range of the materials; (b) the hard-
ness of their constituents; see Chapter 3; (c) the
thickness of the specimen, such as bulk versus
foil; (d) the size of the specimen with respect to
that of the indenter; and (e) the surface finish
of the part being tested.

Which hardness tests and scales would you use
for very thin strips of material, such as alu-
minum foil? Why?

Because aluminum foil is very thin, the indenta-
tions on the surface must be very small so as not
to affect test results. Suitable tests would be a
microhardness test such as Knoop or Vickers
under very light loads (see Fig. 2.22 on p. 52).
The accuracy of the test can be validated by ob-
serving any changes in the surface appearance
opposite to the indented side.

List and explain the factors that you would con-
sider in selecting an appropriate hardness test
and scale for a particular application.

Hardness tests mainly have three differences:

(a) type of indenter,
(b) applied load, and
(c) method of indentation measurement

(depth or surface area of indentation, or
rebound of indenter).
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Problems

2.46

2.47

A strip of mietal is originally 1.5 m long. It is
stretched in three steps: first to a length of 1.75
m, then to 2.0 m, and finally to 3.0 m. Show
that the total true strain is the sum of the true
strains in each step, that is, that the strains are
additive. Show that, using engineering strains,
the strain for each step cannot be added to ob-
tain the total strain.

The true strain is given by Eq. (2.9) on p. 35 as

!
e=1In (E)

Therefore, the true strains for the three steps

are: 175
= —— ] =0.1541
€ =In < 15 ) 0.154
2.0
€9 = In (1—75) = 01335
3.0
=In{— ) =040
€3 n <20) 55

The sum of these true strains is € = 0.1541 +
0.1335+ 0.4055 = 0.6931. The true strain from
step 1 to 3 is

3
— — | =0.6931
€ ln<1.5) 0.693

Therefore the true strains are additive. Us-
ing the same approach for engineering strain
as defined by Eq. (2.1), we obtain e; = 0.1667,
ey = 0.1429, and e3 = 0.5. The sum of these
strains is e; +ep+e3 = 0.8096. The engineering
strain from step 1 to 3 is

l-l, 3-15 15
,, = 15 15

e= 1
Note that this is not equal to the sum of the
engineering strains for the individual steps.

A paper clip is made of wire 1.20-mm in di-
ameter. If the original material from which the
wire is made is a rod 15-mm in diameter, calcu-
late the longitudinal and diametrical engineer-
ing and true strains that the wire has under-
gone.

2.48

Assuming volume constancy, we may write

Iy (do\? 15 \?

L (d j) 1.20 6 96
Letting ly be unity, the longitudinal engineering
strain is e; = (156 —1)/1 = 155. The diametral
engineering strain is calculated as

_12-15
15

€4 —-0.92
The longitudinal true strain is given by
Eq. (2.9) on p. 35 as

e=1In (li) — In (155) = 5.043

o

The diametral true strain is

1.20
fdzln(Ts)

Note the large difference between the engineer-
ing and true strains, even though both describe
the same phenomenon. Note also that the sum
of the true strains (recognizing that the radial
strain is €, = In (%%} = —2.526) in the three
principal directions is zero, indicating volume
constancy in plastic deformation.

—2.526

A material has the following properties: UTS =
50,000 psi and n = 0.25 Calculate its strength
coefficient K.

Let us first note that the true UTS of this ma-
terial is given by UTSine = Kn™ (because at
necking € = n). We can then determine the
value of this stress from the UTS by follow-
ing a procedure similar to Example 2.1. Since
n = (.25, we can write

UTS( A, ) - UTS (229)
Aneck

(50,000)(1.28) = 64,200 psi

UTS!Z!'UB

Therefore, since UTSirye = Kn™,

 UTSewe 64,200

o .0.25025

= 90,800 psi

nn
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Thus

110,000

UTS = %) = 100,000 psi

Hence the maximum load is
F = (UTS)(A,) = (100, 000)(0.196)
or K =19,600 lb.

Using the data given in Table 2.1, calculate the
values of the shear modulus G for the metals
listed in the table.

The important equation is Eq. (2.24) on p. 49
which gives the shear modulus as
bl

G:2(1+u)

The following values can be calculated (mid-
range values of v are taken as appropriate):

Material E (GPa) v G (GPa)
Al & alloys 69-79 0.32 26-30
Cu & alloys 105-150 0.34 39-56
Pb & alloys 14 0.43 4.9
Mg & alloys 41-45 0.32 15.5-17.0
Mo & alloys 330-360  0.32 125-136
Ni & alloys 180-214 0.31 69-82
Steels 190-200 0.30 73-77
Stainless steels 190-200 0.29 74-77
Ti & alloys 80-130 0.32 30-49
W & alloys 350-400  0.27 138-157
Ceramics 70-1000 0.2 29-417
Glass 70-80 0.24 28-32
Rubbers 0.01-0.1 0.5  0.0033-0.033
Thermoplastics 1.4-34 0.36 0.51-1.25
Thermosets 3.5-17 0.34 1.3-6.34

Derive an expression for the toughness of a
material whose behavior is represented by the
equation ¢ = K (e +0.2)" and whose fracture
strain is denoted as ;.

Recall that toughness is the area under the
stress-strain curve, hence the toughness for this
material would be given by

€f
/ ode
0

e
/ K (e40.2)" de
0

Toughness

i

n+1

[(e, o B 0.2““]

11

2.55

2.56

A cylindrical specimen made of a brittle mate-
rial 1 in. high and with & diameter of 1 in. is
subjected to a compressive force along its axis.
It is found that fracture takes place at an angle
of 45° under a load of 30,000 1b. Calculate the
shear stress and the normal stress acting on the
fracture surface.

Assuming that compression takes place without
friction, note that two of the principal stresses
will be zero. The third principal stress acting
on this specimen is normal to the specimen and
its magnitude is

_ 30,000

(o5 = 38,200 psi

I3

The Mohr’s circle for this situation is shown
below.

The fracture plane is oriented at an angle of
45°, corresponding to a rotation of 90° on the
Mohr’s circle. This corresponds to a stress state
on the fracture plane of ¢ = —19,100 psi and
7 =19,100 psi.

What is the modulus of resilience of a highly
cold-worked piece of steel with a hardness of
300 HB? Of a piece of highly cold-worked cop-
per with a hardness of 150 HB?

Referring to Fig. 2.24 on p. 55, the value of
¢ in Eq. (2.29) on p. 54 is approximately 3.2
for highly cold-worked steels and around 3.4
for cold-worked aluminum. Therefore, we can
approximate ¢ = 3.3 for cold-worked copper.
However, since the Brinell hardness is in units
of kg/mm?, from Eq. (2.29) we can write

H 300
Toreel = 55 = 300 = 93.75 kg/mm® = 133 ksi
32 32
- H 150 .
Too =35 =g 155 kg/mm’ = 64.6 ksi
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From Table 2.1, Ky = 30 x 10% psi and
Eoy = 15 x 10% psi. The modulus of resilience
is calculated from Eq. (2.5). For steel:

Y2  (133,000)?

Modulus of Resilience = 2K~ 2(30 x 106)

or a modulus of resilience for steel of 295 in-
Ib/in®. For copper,

Y?  (62,200)°
28 2(15 x 109)

Modulus of Resilience =

or a modulus of resilience for copper of 129 in-
Ib/ind.

Note that these values are slightly different than
the values given in the text; this is due to the
fact that (a) highly cold-worked metals such as
these have a much higher yield stress than the
annealed materials described in the text, and
(b) arbitrary property values are given in the
statement of the problem.

2.57 Calculate the work done in frictionless compres-
sion of a solid cylinder 40 mm high and 15 mm
in diameter to a reduction in height of 75% for
the following materials: (1) 1100-O aluminum,
(2) annealed copper, (3) annealed 304 stainless

steel, and (4) 70-30 brass, annealed.

The work done is calculated from Eq. (2.62) on
p. 71 where the specific energy, u, is obtained
from Eq. (2.60). Since the reduction in height is
75%, the final height is 10 mm and the absolute
value of the true strain is

40
== == =il
€ ln(lo) 386

K and n are obtained from Table 2.3 as follows:

Material K (MPa) n

1100-O Al 180 0.20
Cu, annealed 315 0.54
304 Stainless, annealed 1300 0.30
70-30 brass, annealed 895 0.49

The w values are then calculated from
Eq. (2.60). For example, for 1100-O aluminum,
where K is 180 MPa and n is 0.20, u is calcu-

lated as
n+-1 1.2
oo B (180)(1.386)% MN/m®
n+ 1 1.2

The volume is calculated as V = ar?l =
7(0.0075)%(0.04) = 7.069 x 10~% m®. The work
done is the product of the specific work, «, and
the volume, V. Therefore, the results can be
tabulated as follows.

U Work
Material (MN/m3) (Nm)
1100-O Al 222 1562
Cu, annealed 338 2391
304 Stainless, annealed 1529 10,808
70-30 brass, annealed 977 6908

2.58 A material has a strength coefficient K =
100,000 psi Assuming that a tensile-test spec-
imen made from this material begins to neck
at a true strain of 0.17, show that the ultimate

tensile strength of this material is 62,400 psi.

The approach is the same as in Example 2.1.
Since the necking strain corresponds to the
maximum load and the necking strain for this
material is given as € = n = 0.17, we have, as
the true ultimate tensile strength:

UTSere = (100,000)(0.17)%17 = 74,000 psi.

The cross-sectional area at the onset of necking
is obtained from

Ao
In =n=0.17.
(Aneck)

Consequently,

—~0.17
Aneck = Aot
and the maximum load, P, is

P

oA = (U'I‘Stme)Aoe'o'17
(74,000)(0.844)(A,) = 62,4004, Ib.

il

Since UTS= P/A,, we have UTS = 62,400 psi.
2.59 A tensile-test specimen is made of a material
represented by the equation ¢ = K (e +n)".
(a) Determine the true strain at which necking
will begin. (b) Show that it is possible for an
engineering material to exhibit this behavior.
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