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Chapter 2 

Fundamentals of the Mechanical 
Behavior of Materials 

Questions 

2.1	 Can you calculate the percent elongation of ma­
terials ba."ed only on the information given in 
Fig. 2.6'1 Explain. 

Recall that the percent elongation is defined by 
Eq. (2.6) on p. 33 and depends on the original 
gage length (to) of the specimen. From Fig. 2.6 
on p. 37 only the necking strain (true and engi­
neering) and true fracture strain can be deter­
mined. Thus, we cannot calculate the percent 
elongation of the specimen; also, note that the 
elongation is a function of gage length and in­
creaSE*> with gage length. 

2.2	 Explain if it is possible for the curves in Fig. 2.4 
to reach 0% elongation as the gage length is in­
creased further. 

The percent elongation of the specimen is a 
function of the initial and final gage lengths. 
When the specimen is being pulled, regardless 
of the original gage length, it will elongate uni­
formly (and permanently) until necking begins. 
Therefore, the specimen will always have a cer­
tain finite elongation. However, note that as the 
~llecimen's gage length is increa.'ied, the contri­
bution oflocalized elongation (that is, necking) 
will decrea.'ie, but the total elongation will not 
approach zero. 

2.3	 Explain why the difference between engineering 
strain and true strain becomes larger as strain 

increases. Is this phenomenon true for both ten­
sile and compressive strains? Explain. 

The difference between the engineering and true 
strains becomes larger because of the way the 
strains are defined, respectively, as can be seen 
by inspecting Eqs. (2.1) on p. 30 and (2.9) on 
p. 35. This is true for both tensile and com­
pressive strains. 

2.4	 Using the same scale for stress, we note that the 
tensile true-stress-true-strain curve i<; higher 
than the engineering stress-strain curve. Ex­
plain whether this condition also holds for a 
compre&iion test. 

During a compression test, the cross-sectional 
area of the specimen increll.S€s a." the specimen 
height decrea."es (because of volume constancy) 
as the load is increased. Since true stress i" de­
fined as ratio of the load to the instantaneous 
cross-sectional area of the specimen, the true 
stress in compression will be lower than the en­
gineering stre&> for a given load, assuming that 
friction between the platens and the specimen 
is negligible. 

2.5	 Which of the two tests, tension or compression, 
requires a higher capacity testing machine than 
the other? Explain. 

The compression test requires a higher capacity 
machine because the cross-sectional area of the 
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~pecimen increas~ during the test, which is the 
opposite of a ten~ion test. The increase in area 
require~ a load higher than that for the ten­
sion t~t to achieve the same stress level. F\lr­
thermore, note that compression-t~tspecimens 
generally have a larger original cross-sectional 
area t.han those for ten~ion tests, thus requiring 
higher forces. 

2,6	 Explain how the modulus of resilience of a ma­
terial changes, if at all, as it is strained: (1) for 
an ela..<;tic, perfectly plastic material, and (2) for 
an elastic, linearly strain-hardening material. 

2.7	 If you pull and break a tension-test specimen 
rapidly, where would the temperature be the 
high~t? Explain why. 

Since temperature rise is due to the work input, 
the temperature will be highest in the necked 
region because that is where the strain, hence 
the energy dissipated per unit volume in plastic 
deformation, i~ highe~t. 

2.8	 Comment on the temperature distribution if the 
specimen in Question 2.7 is pulled very slowly. 

If the specimen is pulled very slowly, the tem­
perature generated will be dissipated through­
out the specimen and to the environment. 
Thus, there will be no appreciable temperature 
rise anywhere, particularly with materials with 
high thermal conductivity. 

2.9	 In a tension test, the area under the true-stress­
true-strain curve is the work done per unit vol­
ume (the specific work). We also know that 
the area under the load-elongation curve rep­
resents the work done on the specimen. If you 
divide this latter work by the volume of the 
specimen between the gage marks, you will de­
termine the work done per unit volume (assum­
ing that all defonnation is confined between 
the gage marks). Will this specific work be 
the same as the area under the tme-stress-true­
strain curve'! Explain. Will your answer be the 
same for any value of strain? Explain. 

If we divide the work done by the total volume 
of the specimen between the gage lengths, we 
obtain the average specific work throughout the 
specimen. However, the area under the true 

stress-true strain curve represents the specific 
work done at the necked (and fractured) region 
in the specimen where the strain is a maximum. 
Thus, the answers will be different. However, 
up to the onset of necking (instability), the spe­
cific work calculated will be the same. This is 
becauHe the strain is uniform throughout the 
specimen until necking begiru;. 

2.10	 The note at the bottom of Table 2.5 states that 
as temperature increases, C decreases and m 
increa..'i~. Explain why. 

The value of C in Table 2.5 on p. 43 decreases 
with temperature because it is a mea..'iure of the 
strength of the material. The value of m in­
crea..'ies with temperature becam;e the material 
becom~ more strain-rate sensitive, due to the 
fact that the higher the strain rate, the less time 
the material has to recover and recrystallize, 
hence its strength increases. 

2.11	 You are given the K and n values of two dif­
ferent materials. Is this information sufficient 
to determine which material is tougher? If not, 
what additional information do you need, and 
why'! 

Although the K and n values may give a good 
estimate of toughness, the true fracture stress 
and the true strain at fracture are required for 
accurate calculation of toughne..'ls. The modu­
lus of ela..'iticity and yield stress would provide 
information about the are:a under the ela..'itic re­
gion; however, this region is very small and is 
thus usually negligible with respect to the rest 
of the stress-strain curve. 

2.12	 Modify the CIlfV~ in Fig. 2.7 to indicate the 
effects of temperature. Explain the reasons for 
your changes. 

These modifications can be made by lowering 
the slope of the elastic region and lowering the 
general height of the curves. See, for example, 
Fig. 2.10 on p. 42. 

2.13	 Using a specific example, show why the defor­
mation rate, say in mis, and the true strain rate 
are not the same. 

The deformation rate is the quantity v in 
Eqs. (2.14), (2.15), (2.17), and (2.18) on pp. 41­
46.	 Thu..'l, when v is held constant during de­
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formation (hence a constant deformation rate), 
the true strain rate will vary, wherea..'i the engi­
neering strain rate will remain constant. Hence, 
the two quantities are not the Salue. 

2.14	 It has been stated that the higher the value of 
m, the more diffuse the neck is, and likeWise, 
the lower the value of m, the more localized the 
neck is. Explain the relllion for this behavior. 

As discussed in Section 2.2.7 starting on p. 41, 
with high m values, the material stretches to 
a greater length before it fR.il'i; thlli behR.vior 
is an indication thR.t necking is delayed with 
increasing m. When necking i1J about to be­
gin, the necking region's strength with respect 
to the rest of the specimen increases, due to 
strain hard ning. However, the strain rate in 
the necking region is also higher than in the rest 
of the specimen, becaUHe the material is elon­
gating faster there. Since the material in the 
necked region becomes stronger as it is strained 
R.t R. higher rate, the region exhibits a greater re­
sistance to necking. The increa.se in resistance 
to necking thus depends on the magnitude of 
m. As the tension te~t progresses, necking be­
comes more diffuse, and the specimen becomes 
longer before fracture; hence, total elongation 
increases with increasing values of m (Fig. 2.13 
on p. 45). As expected, the elongation after 
necking (postuniform elongation) abo increR.ses 
with increasing m. It hllli been observed that 
the value of m decrea~ with metals of increas­
ing strength. 

2.15	 Explain why materials with high m values (such 
Illi hot gla..'is and silly putty) when stretched 
slowly, undergo large elongations before failure. 
COIlliider events taking place in the necked re­
gion of the specimen. 

The answer is similar to AIlliwer 2.14 above. 

2.16	 Assume that you are running four-point bend­
ing tests on a number of identical specimens of 
the same length and cros.'i-section, but with in­
crea.'iing distance between the upper points of 
loading (see Fig. 2.21b). What changes, if any, 
would you expect in the test results? Explain. 

As	 the distance between the upper points of 
loading in Fig. 2.21b on p. 51 increa.'ies, the 
magnitude of the bending moment decreases. 

However, the volume of material subjected to 
the maximum bending moment (hence to max­
imum stress) increases. Thus, the probability 
of failure in the four-point test increases as this 
dllitance increases. 

2.17	 Would Eq. (2.10) hold true in the ela.'itic range? 
Explain. 

Note that this equation is ba.'ied on volume con­
stancy, i.e., Aolo = Al. \Ve know, however, that 
because the Poisson's ratio 1/ is less than 0.5 in 
the elastic rR.Ilge, the volume is not constR.nt in 
a tension test; see Eq. (2.47) on p. 69. There'­
fore, the expression lli not valid in the ela..'itic 
range. 

2.18	 Why have different types of hardness tests been 
developed? How would you measure the hard­
ness of a very large object? 

There are several ba.'iic reasons: (a) The overall 
hardness range of the materials; (b) the hard­
ness of their constituents; see Chapter 3; (c) the 
thickness of the specimen, such Illi bulk versus 
foil; (d) the size of the specimen with respect to 
that of the indenter; and (e) the surface finish 
of the part being tested. 

2.19	 Which hardness tests and scales would you use 
for very thin strips of material, such as alu­
minum foil? Why? 

Because aluminum foil is very thin, the indenta­
tions on the surface must be very small so a.'i not 
to affect test results. Suitable tests would be a 
rnicrohardness test such as Knoop or Vickers 
under very light loads (see Fig. 2.22 on p. 52). 
The accuracy of the test can be validated by ob­
serving any changes in the surface appearance 
opposite to the indented side. 

2.20	 LL'it and explain the factors that you would con­
sider in selecting an appropriate hardness test 
and scale for a particular application. 

Hardness tests mainly have three differences: 

(a)	 type of indenter, 

(b)	 applied load, and 

(c)	 method of indentation rnea.'iurement 
(depth or surface area of indentation, or 
rebound of indenter). 
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Problems 

2.46	 A strip of metal is originally 1.5 m long. It 1.., 
stretched in three steps: first to a length of 1.75 
m, then to 2.0 m, and finally to 3.0 m. Show 
that the total true strain is the SlUll of the true 
strains in each step, that is, that the strains are 
additive. Show that, using engineering strains, 
the strain for each step cannot be added to ob­
tain the total strain. 

The true strain is given by Eq. (2.9) on p. 35 IlS 

Therefore, the true strains for the three steps 
are: 

1.75)£1 = In -- = 0.1541( 1.5 

2.0 )
£2 = In - = 0.1335( 1.75 

3.0)
£3 = In ( 2.0 = 0.4055 

The sum of these true strains 1.'i £ = 0.1541 + 
0.1335+0.4055 = 0.6931. The tme strain from 
step 1 to 3 is 

£ = In (2.) = 0.6931
1.5 

Therefore the true strains are additive. Us­
ing the same approach for engineering strain 
as defined by Eq. (2.1), we obtain e1 = 0.1667, 
e2 = 0.1429, and e3 = 0.5. The sum of these 
strains is el +e2+e3 = 0.8096. The engineering 
strain from step 1 to 3 is 

L- L 3 - 1.5 1.5o
e=--=---=-=1 

Lo 1.5 1.5 

Note that this L.'i not equal to the sum of the 
engineering strain..., for the individual steps. 

2.47	 A paper clip is made of wire 1.2D-mm in di­
ameter. If the original material from which the 
wire i'i made L.'i a rod 15-mm in diameter, calcu­
late the longitudinal and diametrical engineer­
ing and true strains that the wire has under­
gone. 

Assuming volume comitancy, we may write 

~~ =	 (~; ) 2 = (/:0) 2 = 156.25 ~ 156 

Letting Lobe unity, the longitudinal engineering 
strain is e1 = (156 -1)/1 = 155. The diarnetral 
engineering strain is calculated as 

ed = 1.2 - 15 = -0.92 
15 

The longitudinal true strain is given by 
Eq. (2.9) on p. 35 8..'i 

£ = In (~) = In (155) = 5.043 

The diametral true strain is 

£d = In (\~O) = -2.526 

Note the large difference between the engineer­
ing and true strains, even though both describe 
the same phenomenon. Note also that the sum 
of the tme strains (recognizing that the radial 
strain is £r = In (o/~) = -2.526) in the three 
principal directions is zero, indicating volume 
constancy in plastic deformation. 

2.48	 A material has the following properties: UTS = 
50,000 psi and n = 0.25 Calculate its strength 
coefficient K. 

Let us first note that the true UTS of this ma­
terial is given by UTStrue = K nn (because at 
necking £ = n). We can then determine the 
value of this stress from the UTS by follow­
ing a procedure similar to Example 2.1. Since 
n = 0.25, we can write 

25UTStrue UTS (~) = UTS (eO. )
A neck 

(50,000)(1.28) = 64,200 psi 

Therefore, since UTStrue = K nn, 

K = UTStrue = 64,200 = 90 800 " 
nn ,0.25°.25 ' psI 
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Thus 

UTS = 110, 000 = 100 000 psi 
1.1 ' 

Hence the maximum load is 

it' = (UTS)(Ao ) = (100,000)(0.196) 

or it' = 19,600 Ib, 

2.53	 Using the data given in Table 2.1, calculate the 
values of the shear modulus G for the metals 
listed in the table. 

The important equation i<; Eq. (2.24) on p. 49 
which gives the shear modulus as 

J!)
G= ~-"'7 

2(1 + 1/) 

The following values can be calculated (mid­
range values of 1/ are taken as appropriate): 

Material E (CPa) /.I C (CPa) 
AI & alloys 69-79 0.32 26-30 
Cu & aIIoys 105-150 0.34 39-56 
Pb & aIIoys 14 0.43 4.9 
l\.fg & alloys 41-45 0.32 15.5-17.0 
Mo & alloys :330-360 0.32 125-136 
Ni & alloys 180-214 0.31 69-82 
Steels 190--200 0.30 73-77 
Stainless steels 190--200 0.29 74-77 
Ti & alloys 80-130 0.32 30-49 
W & alloys 350-400 0.27 138-157 
Ceramics 70-1000 0.2 29-417 
Class 70-80 0.24 28-32 
Rubbers 0.01-0.1 0.5 0.0033-0.033 
Thermoplastics 1.4-3.4 0.36 0.51-1.25 
Thermosets 3.5-17 0.34 1.3-6.34 

2.54	 Derive an expression for the toughness of a 
material whose behavior is represented by the 
equ.ation (7 = K (£ + 0.2t and Wh086 fracture 
strain is denoted as £1. 

Recall that toughness i<; the area under the 
stress-strain curve, hence the toughness for this 
material would be given by 

Toughness = lEI (7 d£ 

lEI K(£+0.2t d£ 

1 n ~ 1 [(£1 + 0.2t+l - 0.2n + ] 

2.55	 A cylindrical specimen made of a brittle mate­
rial 1 in. high and with a diameter of 1 in. is 
subjected to a compressive force along its axis. 
It i<; fOlmd that fracture takes place at an angle 
of 45° under a load of 30,000 lb. Calculate the 
shear stress and the normal stress acting on the 
fracture surface. 

Assuming that compression takes place without 
friction, note that two of the principal stres.<;es 
will be zero. The third prmcipal stres.<; acting 
on this specimen is normal to the specimen and 
its magnitude is 

30, 000 38 200 . 
(73 = -(-)2 = , psI

7r O.~ 

The IvIobr's circle for this situation is shown 
below. 

T 

The fracture plane is oriented at an angle of 
45°, corresponding to a rotation of 90° on the 
IvIobr's circle. This corresponds to a stress state 
on the fracture plane of (7 = -19, 100 psi and 
T = 19,100 psi. 

2.56	 What is the modulus of resilience of a highly 
cold-worked piece of steel with a hardness of 
300 HB? Of a pie(;e of highly cold-worked cop­
per with a hardness of 150 HB? 

Referrmg to Fig. 2.24 on p. 55, the value of 
c in Eq. (2.29) on p. 54 is approximately 3.2 
for highly cold-worked steels and arU1md 3.4 
for cold-worked aluminum. Therefore, we can 
approximate c = 3.3 for cold-worked copper. 
However, smce the Brinell hardness is in unit" 
of kg/mm2 , from Eq. (2.29) we can write 

H	 300 k / 2 33 k ' '1 steel,	 = -2 = - = 93.75 g nun = 1 Sl
3. 3,2 

] ' H 150 k / 2 6 1••.eu = - = - = 45.5 g mm = 4.6 .....<;1
3.3 3.3' 
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From Table 2.1, .b'steel = 30 X 106 pHi and 
.b'eu = 15 x 106 psi. The moduluH of resilience 
iH calculated from Eq. (2.5). For steel: 

Mdl fResT y2 (133,000)2 
o U us 0 '1 lence = 2.b' = 2(30 x 106) 

or a modulus of reHilience for Hteel of 295 in­
Ib/in3. For copper, 

y2 (62 200? 
1vlodulu"" of R~ilience = ----,;; = (' 6)

2.0 2 15 x 10 

or a modulus of resilience for copper of 129 in­
Ib/in3. 

Note that these values are slightly different than 
the valUe:> given in the text; this is due to the 
fact that (a) highly cold-worked metal" such as 
th~e have a much higher yield Htre:>s than the 
annealed materials described in the text, and 
(b) arbitrary property valu~ are given in the 
statement of the problem. 

2.57	 Calculate the work done in frictionless compres­
sion of a solid cylinder 40 mm high and 15 mm 
in diameter to a reduction in height of 75% for 
the following material,,: (1) 1100-0 aluminum, 
(2) annealed copper, (3) annealed 304 stainless 
steel, and (4) 70-30 brass, annealed. 

The work done is calculated from Eq. (2.62) on 
p. 71 where the specific energy, u, is obtained 
from Eq. (2.60). Since the reduction in height is 
75%, the final height is 10 mID and the absolute 
value of the true strain iH 

E = In G~) = 1.386 

K and n are obtained from Table 2.3 Il..'i follows: 

Material ]( (MPa) n 
1100-0 Al 180 0.20 
Cu, annealed 315 0.54 
304 Stainless, annealed 1300 0.30 
70-30 brass, annealed 895 0.49 

The u valu~ are then calculated from 
Eq. (2.60). For example, for 1100-0 aluminum, 
where K iH 180 MPa and n is 0.20, u is calcu­
lated as 

u = _K_E
n
_+_

1 
= (180)(1.386)1.2 = 222 MN/m3 

n + 1 1.2 

The volume is calculated aH V = 7rT 2 {. = 
7r(0.0075)2(0.04) = 7.069 x 10-6 m3 . The work 
done is the product of the specific work, u, and 
the volume, V. Therefore, the r~ultH can be 
tabulated as followH. 

Work 
Material (Nm) 
1100-0 Al 222 1562 
Cu, annealed 338 2391 
304 Stainless, annealed 1529 10,808 
70-30 brll..'iH, annealed 977 6908 

2.58	 A material has a strength coefficient K = 
100,000 psi AHsuming that a tensile-teHt spec­
imen made from thiH material begins to neck 
at a true strain of 0.17, Hhow that the ultimate 
tensile strength of thiH material iH 62,400 psi. 

The approach is the same a." in Example 2.1. 
Since the necking Htrain corre:>ponds to the 
maximum load and the necking strain for this 
material iH given as E = n = 0.17, we have, a." 
the true ultimate tensile strength: 

UTStrue = (100,000)(0.17)°·17 = 74,000 psi. 

The cross-Hectional area at the onHet of necking 
is obtained from 

In (AAo ) = n = 0.17. 
neck 

Consequently, 

and the maximum load, }J, iH 

}J a-A = (UTStrue)Aoe-0.17 

(74,000)(0.844)(A o ) = 62,400Ao lb. 

Since UTS= P/Ao , we have UTS = 62,400 pHi. 

2.59	 A tensile-te:>t Hpecimen is made of a material 
represented by the equation a- = K (E + nt. 
(a) Determine the true Htrain at which necking 
will begin. (b) Show that it is possible for an 
engineering material to exhibit this behavior. 
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