ME 328 - Machine Design

Quiz 1- Closed book, closed notes, NO calculator January 31, 2020

This quiz is MY work, and my work ONLY:

Signature:

Print name:

1. Gear ratios are expressed as fractions or ratios: $\omega_{\text {driving }} / \omega_{\text {driven }}$ or typically $\omega_{\text {driving }}: \omega_{\text {driven }}$ or $\omega_{\text {in }}: \omega_{\text {out }}$ (input speed to output speed). Consider a DC electric motor with the performance curve shown below. If the gear ratio is $2: 1$, what is the output speed (the speed of the lifting drum) if no load $(0 \mathrm{~kg})$ is applied? Express your answer in revolutions per minute.

If no load is applied, the motor will spin freely at 140RPM.
Gear ratio: $\omega_{\text {in }}: \omega_{\text {out }}($ input speed to output speed $)=2: 1$ means that the motor (input) is spinning twice as fast as the drum (output). Therefore, the drum is spinning half as fast as the motor.

Drum speed $=70$ RPM

Problem 2 is on the backside....

Beam deflection charts, L is the total length of the beam:

7	${\underset{B}{P}}_{\underbrace{P}}$	Chart 1	$\begin{aligned} \delta_{\mathrm{B}} & =\frac{P L^{3}}{3 E I} \\ \theta_{B} & =\frac{P L^{2}}{2 E I} \end{aligned}$
		Chart 2	
			$\theta_{\mathrm{B}}=\frac{M L}{E I} \quad \delta_{\mathrm{B}}=\frac{M L^{2}}{2 E I}$

2. A 6 m long cantilever beam has a 10 kN load at the end as shown below. What is the angular deflection at the mid-length (point A)?

a) Create FBD of the equivalent system necessary to solve this problem with the information given in the charts above:

b) Set up the appropriate equations in variable form:
$\Theta_{\mathrm{A}}=\mathrm{PL}^{2} /(2 \mathrm{EI})+\mathrm{ML} /(\mathrm{EI})$
c) As much as possible, include numbers in-place of the variables, but do not solve:
$\Theta_{\mathrm{A}}=(10 \mathrm{kN})(3 \mathrm{~m})^{2} /(2 \mathrm{EI})+(30 \mathrm{kNm})(3 \mathrm{~m}) /(\mathrm{EI})$
