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Terms: 
 
Response - the thing to be measured.  Example, if you want to determine the boiling 
point of water at different pressures, the boiling point temperature is the response. 
 
Factor - an independent variable in an experiment - factor levels are intentionally varied 
in an experiment to see what the effect is on the response. 
 
Factor Level - the target value of the factor (ex. I want the pressure to be 0.5 Atm, 1.0 
Atm, and 1.5 Atm - the factor called “pressure” has 3 levels. 
 
Run - a set of experimental test conditions.  All factors are set to specific levels.  If I want 
to measure the boiling point at three pressure levels, I need at least three runs - one with 
the pressure at each of the 3 levels. 
 
Treatment - a set of experimental conditions.  One treatment is conducted each run, but 
treatments may be replicated in an experiment (may occur more than once). 
 
Repetition - measuring the same response more than once (or taking another data point) 
without resetting up the experimental conditions.  Decreases measurement errors to a 
limited degree. 
 
Replication - requires completely redoing the experimental conditions.  In other 
words, setting up the conditions as identically as possible to produce another 
measurement.  Replications are very important to estimate the experimental error.  It 
shows the effects of set-up, and other unknown extraneous variables.  Replication is NOT 
the same as repetition, although they sound similar. 
 
Balanced Experiments - all experimental factors are tested an equal number of times at 
the different levels. For each factor setting, all of the other factors are set to each of their 
levels an equal number of times. 
 
Blocking:  subdividing the experiment into groups 
 
Statistical models - based on statistical analysis of empirical data 
 
Deterministic models - based on data created from “deterministic” methods, such as 
computer modeling.  Deterministic means there is zero random variation in the output. 
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EXPERIMENTS AND TESTS - what are they and how are they different? 
 
Both require obtaining data (taking measurements) 
 Testing  
  *usually evaluates performance of something (eg. a test could determine the 

strength of a new material). 
  *often has a “pass/fail” criteria (eg. does this product meet the strength 

requirements?) 
 Experiments 
  *requires changing input to detect a change in output 
  *not associated with pass/fail, but rather evaluate “better/worse” 
  *trying to learn how things work or perform under differing conditions 
  *often, conditions may be included where the outcome is known to be “bad” 
 
Designing experiments requires balancing competing criteria, as does designing 

components: cost, time, available equipment, control over variables, desired outcome, 
etc. must all be considered 

 
ALL experiments require careful interpretation!  Know how the data was created 

and was analyzed - ALWAYS! 
 
 
ERRORS 
 
Two basic types of errors:  systematic and random 
 Systematic errors 

*caused by underlying factors (extraneous variables) which affect the results in a 
“consistent/reproducible” and sometime “knowable” way - not random 

*can be managed (reduced) by properly designed experiments 
*DANGER: can lead to false conclusions!!! 
 -remember, correlation is not causation! Example: Farmer A had 

consistently higher crop yield than Farmer B, therefore, there was a 
correlation between farmer and yield.  However, they each had different 
fields.  Therefore, the variable “Farmer” is confounded with the variable 
“Field”; which one caused the difference in yield, the Farmer or the Field?  
You can not say unless a more elaborate experiment were conducted to 
eliminate the confounding of these variables.  If you conclude that the Farmer 
is what caused the difference, you either did not understand how the 
experiment was conducted or how it was analyzed - or you didn’t think about 
alternative explanations - BAD on you! 

 
 Random errors 

*shows no reproducible pattern 
* for our purposes, distribution is assumed to be normal (bell shaped); therefore, 

averaging several readings will reduce random errors. 
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EXPERIMENTATION 
 
Two basic types: “one variable at a time” and “Statistical Designed Experiments” 
 
 The “one variable at a time” method 
 *change one variable at a time, while holding all others constant 
 *traditional approach, simple and intuitive 
 *can not measure interactions (discussed below) 
 *does not “manage” errors (neither systematic nor random) 
 *low confidence in the conclusions – so why do them? 
 
Designed Experiments (or Design of Experiments, DOE’s) 
    *statistically based methodology of conducting and analyzing experiments 
    *interactions can be evaluated 
    *random error (noise) can be mitigated by "balanced" designs (each variable is tested 

at different levels several times) 
    *systematic error can be mitigated by randomization and blocking (discussed later) 
    *can handle complex problems 
    *basic techniques will be discussed in detail below 
    *many techniques are available, but beyond the scope of this course 

 
ONE VARIABLE AT A TIME 
Example 

Conduct an experiment to determine optimal conditions for the following.  A 
manufacturer wants to know what the optimal settings should be for machining a 
circular shaft.  The variables of interest are: cutting fluid (used or not used), 
cutting depth (0.005” or 0.010”), and cutting speed (500 rpm or 1000 rpm).  
Experiment and results are shown in the table below: 

 
Run 
number 

variable value or level result (surface finish) 
{small is good} 

1 cutting fluid 
depth of cut 
speed 

yes 
0.005” 
500 rpm 

140 rms 

2 cutting fluid 
depth of cut 
speed 

no 
0.005” 
500 rpm 

190 rms 

3 cutting fluid 
depth of cut 
speed 

yes 
0.010” 
500 rpm 

120 rms 

4 cutting fluid 
depth of cut 
speed 

yes 
0.005” 
1000 rpm 

90 rms 
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What is the optimal setting?  Is it using cutting fluid, 0.005” depth, 1000 rpm?  What 
about using cutting fluid, 0.010” depth, 1000 rpm?  Others?  If you suspect increased 
temperature would result in improvements, what would you conclude about the results 
above if you know temperature did increase during the testing?  What if you expect 
random variation of the results for any single test condition to be about 20 rms; can you 
conclude that conditions tested in Run 4 would typically produce results better than 
conditions of Run 3? 
 
Obviously, there are many weaknesses in the above experiment.  The one variable at a 
time approach is very “inefficient”.  In other words, you must spend a lot of time and 
money to obtain high confidence in the conclusions. 
 
If you were to repeat the above experiment 5-10 times, the random errors would be 
reduced and you would start to achieve high confidence in the results.  However, you still 
would have no sense as to how interactions may affect conditions not tested.  We will 
explain what is meant by “interactions” next. 
 
 
DESIGN OF EXPERIMENTS (DOE) 
DOE’s uses statistically based methodology to conduct and analyze experiments.  
Interactions can be evaluated and noise (variability) is properly managed.  They are very 
efficient in terms of a high degree of confidence in the conclusions can be reached with 
minimized expenditures. 
 
Using a balanced design (all experimental factors are tested an equal number of times at 
the different levels) allows for all factors to be tested several times at each of its levels.  
This reduces the random error.  Randomizing mitigates systematic errors.  More will be 
discussed regarding balanced experiments and randomizing later. 
 
 
Interactions: 
By running combinations of each factor at various levels, interactions can be evaluated.   
 
Example:  we properly design an experiment to determine how two different seeds of 

corn (Seeds A and B) perform with differing levels of irrigation (irrigated or not).  
We get the following (notice, this is a balanced experiment): 

 
Run seed Irrigated result (bushels) 

1 A Yes 12 
2 A No 8 
3 B Yes 20 
4 B No 16 

 
 
Let us graph the results: 
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As shown in the graph, the effect of irrigation is the same for both seeds.  Both seeds 
produce 4 more bushels if they are irrigated.  This results in the lines being parallel; 
therefore, there is NO INTERACTION between seeds and irrigation.  They are 
independent of each other. 
 
Now let’s do the same experiment using two different seeds (C and D), therefore we get 
different results: 
 

run seed Irrigated results (bushels) 
1 C Yes 12 
2 C No 8 
3 D yes 17 
4 D no 16 

 
 
Graphing the results: 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in the graph, the effect of irrigation is NOT the same for both seeds. Seed C 
is affected much more by irrigation than is Seed D.  This results in the lines not being 
parallel; therefore there IS INTERACTION between seeds and irrigation.  They are not 
independent of each other. 
 

A B 

Irrigated 

non-irrigated 

C D 

irrigated 

non-irrigated 
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Error “Management” - how can the effects of error be mitigated? 
 
Random Errors - it is assumed that random errors will have a normal distribution (bell 
curve) about the true mean value.  If this is the case (as it often is) then by taking multiple 
measurements (or testing the same variable multiple times) the average of these 
measurements will be close to the true mean value.  The random error gets “averaged 
out” to be near zero - it will become zero with an infinite number of replicate 
measurements).  Balanced designs maximize the number of data points each factor level. 
 
Including as many data points for each factor setting as possible reduces random errors.  
In the machining example above, we have three data points created when the depth of cut 
was 0.005 inches, but only one data point for 0.010 inches.  What if the one point taken at 
0.010 inch depth of cut contained a large amount of random error?  Since there is no way 
for us to determine the amount of error in a single data point, the error could lead us to an 
erroneous conclusion.  It would be better if we had two data points for each the 0.010 and 
0.005 inch cuts.  When all of the factors are set to each value an equal number of times 
during the experiment, the experiment is called “balanced”. 
 
Systematic Errors - systematic errors cause the data to vary in a systematic way.  This is 
not bad just because it introduces “uncertainty” in the data, but it is very bad if it leads 
you to erroneous conclusions.  Randomization is used to eliminate the effective 
systematic errors - errors may still exist, but will not lead to false conclusions.  Consider 
the farming example above.  The experimental factors where Seed type (A or B) and 
irrigation (irrigated or not).  Let’s say both farmers chose to plant Seed A before Seed B.  
They also both chose to start at the north side of their field and plant towards the south.  
Did Seed B produce a larger crop because it is a better seed, or was it due to the effect of 
being planted on the south side of the field (maybe it received more sunshine).  The effect 
of location potentially introduces a systematic error.  By randomizing the planting order 
the effect of location will not bias the results.  Both seeds are planted at various locations.  
In this example, we had the luxury of identifying a potential systematic error.  This is not 
always the case - there maybe systematic errors we are unaware of.  
 
RANDOMIZE even if it is painful! 
 
 
BALANCED DESIGNS – What it really means 
 
An important characteristic of Designed Experiments (in general) is having a balanced 
design.  In other words, each factor is tested an equal number of times at each level, and 
all of the other factors must be set to each of their values an equal number of times for 
each factor setting.  This is done so the variation of all the other factors does not bias the 
results. 
 
In the above farming example, consider the variable called “seed”.  It was tested an equal 
number of times at each of its levels (twice for Seed A and twice for Seed B).  All of the 
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other factors (in this case, only one:  irrigation) was tested at its levels an equal number 
of times for each level of “seed”.  When Seed A was tested, the irrigation was set to each 
level an equal number of times (once for irrigated and once for not irrigated), and an 
equal number of times for Seed B.  This way both Seed A and Seed B experienced the 
same variation from the other factors. 
 
In the analysis of variation (ANOVA, discussed below), when evaluating the effect of 
each seed (or what ever the factor is), we will average the response of all test runs 
conducted with the factor at each setting.  For studying the main effect of a factor, we 
will assume the variability introduced by the other factor settings is “averaged away”. 
The table from the first seed experiment is repeated here: 
 

Run Seed Irrigated result (bushels) 
1 A Yes 12 
2 A No 8 
3 B Yes 20 
4 B No 16 

 
The average output from Seed A was:  (12+8)/2 = 10, and Seed B:  (20+16)/2=18,  Seed 
B produced more bushels.  The effect of irrigating was: (12+20)/2=16 and not irrigating: 
((8+16)/2=12.  Irrigating produced more bushels.  By irrigating Seed B we would expect 
to maximize the output. 
 
Conclusions Regarding Designed Experiments 
 *statistically based methodology of conducting and analyzing experiments 
 *interactions can be evaluated 
 *random error (noise) can be mitigated by "balanced" designs 
 *systematic error can be eliminated by randomization and blocking 
 *can handle complex problems 
 *many techniques are available, but beyond the scope of this course 
 *often more effort than “one variable at a time”, but worth it 

*high confidence in conclusions – or a least a high confidence in our confidence 
level 

 
We will eventually look at experimental design in more detail, but first, statistics. 
 
 
STATISTICS 
Since DOE’s require statistics, we need to define a few basics.  For the duration of the 
discussion on Designed Experiments, we will assume all data is normally distributed 
(bell curve).   

 = true mean  
X = estimated mean based on finite sample size 
 = true standard deviation 
s = estimated standard deviated based on the finite sample size 
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n = number of samples 
 
 

X = 1/n 


n

i
ix

1

  xi is the value of the ith sample 

 

s = 





n

i
i Xx

n 1

2)(
1

1
 

 
Note:  X is an estimate of the actual mean.  It becomes closer to  with increasing sample 
size, n.  X itself is a random sample of the true mean, . 
 
For normally distributed data: 

68.26% of all data will be with in +/-  
95.44% of all data will be with in +/- 2 
99.73% of all data will be with in +/- 3 

 
 
APPLICATIONS OF STATISTICS 
We eventually want to apply statistics to help us design experiments.  Before we do that 
for complex experiments, let’s first look at some basic applications of statistics in 
analyzing simple experiments. 
 
t-test - Are two sets of data truly different? 
Example: We want determine if the average length of trout in two rivers (the Abiqua and 
Breitenbush Rivers) are different.  We decide to collect this data we will go to the rivers 
and, using a net, pull 10 trout from each river.  We will measure the trout using a ruler.  
We determine the average length of trout in the Abiqua was 7.93 inches and the average 
length in the Breitenbush was 7.08 inches.  So are fish in the Abiqua longer?  Since we 
did not measure all of the trout, but rather a sample of the trout, we cannot say for sure.  
Obviously, the averages are different, but we could not expect them to be identical.  If we 
repeated this experiment, we would not expect to get the exact same values. Comparing 
averages is NOT sufficient to answer the question.  In fact, unless we measure all the 
trout, we can never say for sure. The only question we can answer is:  is there a 
statistically significant difference in the data?  What this means is that if we were to 
measure more trout, what is the likelihood that the mean values of our two sets of data 
will actually converge to the “same” value?  Let’s look at the data: 
 
The lengths are as follows (inches): 
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Table 1 - Case A, trout lengths (inches) 
Abiqua 8.19 7.70 8.12 7.58 8.27 8.02 8.23 8.01 7.70 7.47
Breitenbush 7.15 7.29 7.37 7.08 6.72 6.68 6.77 7.37 7.34 7.01

 
XAbiqua = 7.93”    sAbiqua = 0.291” 
XBreitenbush = 7.08” sBreitenbush = 0.275” 
 
 
Looking at the data gives us the sense that the lengths of trout do not vary significantly in 
each river.  Since the lengths in each river does not vary significantly, if we were to 
measure 10 more trout from each river, it does not appear that the mean value will likely 
change significantly.  Therefore, we may be confident that the trout in the Abiqua are 
indeed longer than the Breitenbush trout.  However, what if the data was really as shown 
in the next table: 
 
Table 2 - Case B, trout lengths (inches) 
Abiqua 4.71 7.54 8.97 8.46 5.34 8.71 6.10 10.36 8.92 10.20
Breitenbush 5.34 7.47 8.60 7.09 4.97 7.34 5.73 5.89 7.55 10.79

 
XAbiqua = 7.93”  sAbiqua = 1.96” 
XBreitenbush = 7.08” sBreitenbush = 1.74” 
 
The average lengths are the same as Table 1, but we can see that the variation is much 
more significant.  Since the lengths do vary significantly, if we were to measure 10 more 
trout from each river, it does appear that the mean value will change significantly.  We 
are less confident that the average lengths of all trout in the two rivers will be different. 
 
What if your boss asked you “how sure are you that fish are longer in the Abiqua?”  You 
are a high paid engineer, you do not want to say “pretty sure”.  You want to be able to 
quantify how confident you are.  You want to say “I am 98% confident.” 
 
What we need is a way to evaluate how confident we are that our sample mean (x) is 
“close” to the real mean ().  This can be expressed mathematically as: 
 
x =  +/- t sx      where sx is the sample standard deviation, and t will be discussed next. 
 
The t-test provides you with the ability to evaluate how far off the sample mean is from 
the true mean to a certain level of confidence.  The t-test is used in “hypothesis testing”; 
discussed next. 
 
 
Hypothesis Testing 
 
I propose a null hypothesis, meaning I propose the two sets of data are from the same true 
mean, Abiqua = Breitenbush = .  Notice, we are talking about true means (), not sample 
means (X).  We already know sample means are different, and we really don’t care about 
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that.  Hypothesis testing requires you to provide evidence that the hypothesis is incorrect; 
provide evidence that Abiqua  Breitenbush 
 
First, we assume the standard distribution of the two sets of data is the same (N Sant = S 

Sant).  This is often a reasonable assumption.  Now we can pool the data to get a better 
estimate of standard deviation.  (We will use subscript “A” and “B” for the two sets of 
data, in our case, Abiqua and Breitenbush) 
 
        sp

2 = {(nA - 1) sA
2 + (nB - 1) sB

2 } / { (nA - 1) + (nB - 1) }  
 
For our first case (Table 1), this gives us: 
  
 sp

2 = {9(0.291)2 + 9(0.275)2 }/ 18 = 0.08  
 
        
We now define t0, which is from the t-distribution: 
    t0 = ABS{ XA - XB } / { sp

2 (1/nA + 1/nB) }1/2 
 
  = ABS{ 7.93 - 7.08} / { 0.08 (1/10 + 1/10) }1/2 
 
 t0 = 6.72 
 
{For the second case, Table 2, we get sp

2 = 3.43  and t0 = 1.03} 
 
so what is this “t” number?  Before we have an answer to our question, we must 
determine the degree of freedom in our experiment (the denominator of the standard 
deviation).  DOF = (nA - 1) + (nB - 1) = (10 - 1) + (10 - 1) = 18.  Now we compare the t-
distribution we have calculated with tabulated values for 18 degrees of freedom (see 
Table 3.4 of the Holman text).  We look for a value of “t” close to our calculated value, 
for the same degrees of freedom.  For 18 DOF, t99 = 2.878.  Since, in our first example, 
t0=6.72, and 6.72>2.878, we are over 99% confident that the null hypothesis was 
incorrect.  We can say at the 99% confidence level that the average trout length is greater 
in the Abiqua River than in the Breitenbush River. 
 
For our second example (Table 2) we calculated t0 = 1.03.  For 18 DOF, t50 = 0.688, and 
t90 = 1.734.  So for our second case t0 was between these two values (0.688<1.03<1.734).  
We have between 50% confidence (a coin toss) and 90% confidence that the null 
hypothesis was incorrect.  That is not very confident.  If we wanted to be more certain of 
our answer, we need to collect more data. 
 
In conclusion, we have shown that just because the mean values of two sets of data are 
different, we cannot automatically assume the sets of data that they represent are truly 
different.  The t-test is used to determine if the mean values of two sets of data are 
different. 
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What if we have more than two sets of data?  The t-test compares mean values of two 
sets of data.  This is useful in the simplest of experiments, where we wish to determine if 
a change in a single variable has an effect on some response.  What if we wanted to 
change two variables, then we would need to evaluate the response for four sets of data 
(two sets from each of the two variables).  We need a way to analyze the variation in the 
response measurements to determine if there is a real change as a result of changing the 
test variables. 
 
 
ANOVA (Analysis of Variation) 
 
ANOVA is the basis for all Designed Experiments that we will be discussing.  The 
purpose of conducting any experiment is to determine the variation caused by changing 
the factor levels.  Proper analysis of the variation is required to come to proper 
conclusions. 
 
Example - Consider the three sets of data: 
 

Group 1  Group 2  Group 3  
Label Value Label Value Label Value 

x11 3.7 x21 4.3 x31 2.8 
x12 4.7 x 22 2.6 x32 3.8 
x13 3.6 x 23 3.4 x33 4.2 
x14 2.9 x 24 2.8 x34 2.9 
x15 4.2 x 25 3.3 x35 4.3 

 
X1 = 3.82 
s1 = 0.68 
n1 = 5 

X2 = 3.28 
s2 = 0.66 
n2 = 5 

X3 = 3.60 
s3 = 0.71 
n3 = 5 

 
 XT = 3.57 
 N = n1 + n2 + n3 = 15 
 k = number of groups = 3 
 
As we observed in the trout example, to determine if two sets of data are truly different 
we need determine if the sample means are sufficiently different considering the variation 
of the data points themselves.  The more variation in the data points, the further apart the 
mean values need to be to maintain high confidence that the data sets are unique.  The 
concept is the same for multiple sets of data as for two sets, but the mathematics gets 
more complex. 
 
How much variation is there in these 3 population groups? 
 

1. Total variation (standard deviation of all the data, not separated into groups) 
 



 

ME 403 – Engineering Design: Product Realization  13

 sT
2 = (1/(N-1)) 



k

i 1

 


in

j 1

 (xij - XT)2  ; where xij is the value in the above table. 

Total variation is just that.  It shows how much variation there is in the data as if it 
came from one group. 
 
2. Variation BETWEEN groups: 
 

 sb
2 = (1/(k-1)) 



k

i 1

ni(Xi - XT)2 

 
3. Variation WITHIN groups (pooled standard deviation) 
 

 sw
2 = (1/(N-k)) 



k

i 1



in

j 1

 (xij - Xi)
2 

 
 
However, comparing variation BETWEEN groups with variation WITHIN groups 
gives us information about statistical significance of their difference.  If the variation 
between treatments is about the same as the variation within the treatments, then the 
difference between the groups is not significant.  If however, the variation between 
groups is large compared to variation within the groups, then they are different.   
 
Say for example, Group 1 data was produced on Machine A, Group 2 data was 
produced on Machine B, and Group 3 data was produced on Machine C.  Since in our 
example the variation between groups was about the same as the variation within 
groups, then all three machines behave about the same.  The machine selection has 
little impact on the measured response. 
 

 
Basic ANOVA Equation: 
 
Some of Squares (SS): 
 
SStotal = SSwithin + SSbetween 
 
 

SStotal = 


k

i 1



in

j 1

 (xij - XT)2  = 


k

i 1



in

j 1

 (xij - Xi + Xi - XT)2 

 




k

i 1



in

j 1

 (xij - Xi)
2  + 



k

i 1



in

j 1

 (Xi - XT)2  + 2


k

i 1



in

j 1

 (Xi - XT)(xij - Xi) 
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= 


k

i 1



in

j 1

 (xij - Xi)
2   +  



k

i 1



in

j 1

 (Xi - XT)2 

 
= SSwithin + SSbetween 
 
ANOVA Model (What is a model?  It is a “representation” of something real.) 
 
Response (Yij) =  

overall effect common to all observations () 
+ 
treatment effect (i) - how the specific treatment causes deviation from the overall mean 
+ 
random error (ij) - has a mean value of zero and variation of  

 
Yij =  + i + ij 
 

Note:   i  = 0 
 

SOSS (Summary of Statistics Stuff): 
 

Between sets of data (treating the means of the sets as values themselves): 
 

 Sum of Squares:    SSb = 


k

i 1



in

j 1

 (Xi - XT)2  = 


k

i 1

ni (Xi - XT)2 Eq 1 

 
 Degrees of Freedom (): dfb = k – 1 Eq. 2 
 
 Mean Square: MSb = SSb/dfb = SSb/(k-1) Eq. 3 
 

 
Within sets of data (this is really “error”): 
 

 Sum of Squares:   SSe = 


k

i 1



in

j 1

 (xij - Xi)
2 Eq. 4 

 
 Degrees of Freedom (): dfe = N – k Eq. 5 
 
 Mean Square Error: MSe = SSe/dfe = SSe/(N - k) Eq. 6 
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Total: 
 

 Sum of Squares: SStotal = 


k

i 1



in

j 1

 (xij - XT)2 Eq. 7 

 
 Degrees of Freedom (): N-1  Eq. 8 
 
 
Something new (to be used in the next example): 

 
 F-statistic F = MSb/MSe Eq 9 
 
 This is the ratio of mean squares between and within data. 

If the ratio is big, than there is a lot more variation (big difference) between sets 
of data than within the data sets (i.e. real effect is bigger than noise effects) 

This is similar to t0 discussed above.  t-tests evaluate means, F-test evaluates 
variance (deviations). 

 
 
 
Let’s demonstrate the F-test and t-test  
 
t-test (two sets of data) - consider two sets of data with the following histograms (based 
on estimated means and deviations): 
 
 
 
 
 
 
If there were sufficient number of data points, the t-test would likely state that these two 
sets of data are not from the same true set of data. 
What about the following two sets? 
 
 
 
 
 
 
 
Depending upon how many data point there are, it is likely the t-test would not be able to 
reject the null hypothesis. We could not say with confidence that two sets of data are 
truly different.  The difference may be due to chance variation in actual data values. 
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F-test 
F-test is used to compare more than two sets of data.  It compares the variation between 
the means, with the variation within each set (error). 
 
 
 
 
 
 
There appears to be real differences in these sets of data. 
 
 
 
 
 
 
 
 
 
Who knows?  (The F-test knows!) 
 
Example: 
Objective: 

Determine which of four cutters used on a milling machine produce the smoothest 
finish.  Recommend to your boss which cutter should be used based on surface finish 
and economics. 

 
Given: 

43 rods are available to use in the experiment 
It takes 15 minutes to change cutters (not a trivial task) 
A highly accurate gage is available to measure surface finish 

 
Task:  design an experiment to achieve the objective. 
 
Experiment: 
 How many rods should be used on each cutter?  (We will use 10) 

What should the run order be?  Should randomization be used?  Should complete 
randomization be used?   What are your options for randomizing? 
 For our example, we will assume complete randomization of all experimental test 
 runs. 
 If full randomization were prohibitive, then partial randomization could be used.  

For example, two parts could be made with each cutter before changing cutter. 
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The results of our experimental runs are: 
Cutter 1 Cutter 2 Cutter 3 Cutter 4 

33 43 48 40 
38 49 51 35 
32 34 53 32 
30 39 47 28 
37 41 42 29 
35 40 39 34 
41 45 46 31 
29 47 49 29 
28 lost 41 37 
39 lost lost 30 

    
X1 = 34.20 X2 = 42.25 X3 = 46.22 X4 = 32.50 
s1 = 4.49 s2 = 4.80 s3 = 4.71 s4 = 3.92 
n1 = 10 n2 = 8 n3 = 9 n4 = 10 

 
Is lost data going to really hurt us?  No, these are replicates, so we still have ability to 
analyze the data. 
 
Lets compile the data into a table.  We will use equations 1-9 from “Summary of 
Statistics Stuff” a few pages ago. 
 
Table 3 - ANOVA Table for the cutter data 
Source Sum of Squares Degree of 

Freedom 
Mean Squares F 

Between SSb =1193.76 1 = dfb = 3 MSb = 397.92 19.92 
Within (error) SSe = 659.16 2 = dfe = 33 MSe = 19.97  

     
total SST = 1852.92 36   

 
The F-statistic is 19.92, so is this a large number?    We need an F-table to answer that 
question (unfortunately, our text does not have an F-table).  So refer to Box, Hunter, 
Hunter, Table D (pg. 638). For degrees of freedom, 1 = 3, 2 = 33, how large does F 
have to be for us to be 95% certain that the cutters do have an effect?  What about 99% 
certain?  (Ans: F must be greater than about 2.90 for 95% confidence, greater than about 
4.45 for 99% confidence).  Our F-statistic was 19.92, so we are over 99% certain that the 
cutters do behave differently (they do affect the response). 
 
The above analysis only tells us that the cutters have a statistically significant effect.  It 
does not tell us which is best, nor how they are different.  Two methods will be presented 
to help answer this question.   
 
“Intuitive” - look at the data, and let your brain evaluate it.  Caution, this can be 
somewhat misleading.  Plotting the means of each group can be helpful: 
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We have established cutters do really make a difference, but is Cutter 4 really better than 
Cutter 1?  Or is the observed mean difference between these two cutters strictly by 
chance?  The “intuitive” approach does not answer that question with any certainty.  
 
What if Cutter 4 was more expensive than Cutter 1, would you recommend using them? 
 
Fisher Least Significant Difference  - this method uses multiple two-sample t-tests. Need 
to compare Cutter 1 with Cutters 2, 3 and 4, Cutter 2 with Cutters 3 and 4, and Cutter 3 
with Cutter 4 (a total of 6 t-tests). 
 
We compare the difference in mean values of the cutters (Xi - Xj) with the so-called 
LSD.  If absolute value(Xi - Xj) > LSD, then the two are likely different. 
 

 LSD = (t/2,N-k ) (MSe)
1/2(1/ni + 1/nj)

1/2 
 
where t/2,N-k is the value from the t-distribution based on N-k degrees of freedom with 
/2 uncertainty.  MSe is the mean square error term calculated above to be 19.97.  For 
our example, we want 95% confidence, and we have 36-6=33 degrees of freedom.  From 
a t-distribution table we determine that t/2,N-k = 2.036. 
 
Comparing Cutter 1 with Cutter 2: 
 

abs(X1 - X2) = abs(34.20 - 42.25) = 8.05 
 
LSD = (2.036)(19.97)1/2 (1/10 + 1/8)1/2 = 4.32 
 
8.05 > 4.32  therefore Cutter 1 and Cutter 2 are different. 

 

30 40 50 

Cutter 1 

Cutter 2 

Cutter 3 

Cutter 4 
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Comparing all the others: 
 

Comparison Difference (Xi-Xj) LSD Different? 
1 & 2 8.05 4.32 Yes 
1 & 3 12.02 4.28 Yes 
1 & 4 1.70 4.07 No 
2 & 3 3.97 4.42 No 
2 & 4 9.75 4.32 Yes 
3 & 4 13.72 4.18 Yes 

 
What if Cutter 4 were more expensive than Cutter 1, which would you recommend? 

 
Review: 

First, we did an F-test to determine if the cutters really had an effect. 
We determined the cutters did have an effect. 
We “intuitively” determined that Cutter 4 was the best, but did not trust our intuition. 
Then we applied the Fisher LSD method to determine which individual cutters were 
different from the others. 
We determined that there is not a statistically significant difference between Cutters 1 
and 4, and between Cutters 2 and 3. 
What if Cutter 4 is much more expensive than Cutter 1.  Would you recommend 
using it based on intuition without doing a more rigorous evaluation (such as Fisher 
LSD)?  After doing the Fisher LSD, would you recommend Cutter 4? 
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HOMEWORK: 
 
Situation: 
 Your company produces optical supplies.  The quality of optical mirrors is not 

satisfactory.  You believe that the problem has to do with grinding speed. 
Given: 

*Your company has 12 grinding machines to produce optical mirrors. 
*The machines are numbered 1-12, but are randomly placed throughout the shop. 
*You are allowed to use a total of 24 mirrors in your experiment. 

Task: 
Design an experiment (i.e. fill in the table below) to determine which cutting speed is 
better, Fast or Slow.  At a maximum, you will have 24 runs. 
You are not trying to evaluate grinding machine performance, so you may use any 
number of grinding machines (1,2,...12). 
 

Run Grinder Speed  Response (to be 
filled in later) 

1    
2    
3    
4    
5    
6    
7    
8    
9    
10    
11    
12    
13    
14    
15    
16    
17    
18    
19    
20    
21    
22    
23    
24    
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HOMEWORK Discussion:  
To make the best use of the samples, 12 samples should be produced at slow speed and 
12 at high speed. Randomization of run order should be employed so that we do not do 
12 at slow speed, then 12 at high speed.  Some formal method of randomization should 
be used, such as a random number generator (available in Excel, RAND.  DO NOT rely 
on your intuition to create a random order. 
 
What were the options for “what machines” to use?  We could have used only one 
machine, but what if there was something “odd” about that one machine that we were 
unaware of?  It would be better to use all 12 machines.  We could use six machines to 
produce 12 mirrors at slow speed, and the other 6 machines to produce 12 mirrors at high 
speed.  Do we think it is IMPOSSIBLE that the machines DO NOT vary?  NO!  It IS 
POSSIBLE that they may vary.  So “machineness” may have an effect.  It may be due to 
operator or something else unknown.  But we are not interested in determining which 
machine is best, since we already own and need to use all 12 of them.  So does it matter if 
they vary?   
 
It does matter because: 
1) they can introduce systematic error if we do not include them in the experiment 

properly. 
2) by including them properly in the experiment, we can use a very powerful tool called 

Blocking (as will be discussed in a bit). 
3) Each grinder machine should produce 1 mirror at slow speed and 1 at fast: 
 

Run Grinder Speed Run Grinder Speed 
1 2 Slow 13 4 Slow 
2 3 Slow 14 7 Fast 
3 11 Fast 15 5 Slow 
4 6 Slow 16 6 Fast 
5 1 Slow 17 11 Slow 
6 5 Fast 18 4 Fast 
7 10 Slow 19 9 Fast 
8 8 Fast 20 10 Fast 
9 2 Fast 21 8 Slow 
10 12 Slow 22 3 Fast 
11 12 Fast 23 1 Fast 
12 9 Slow 24 7 Slow 
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After taking the data in the run order listed above, the data can be resorted as follows: 
 
Table 4 - Mirror grinding results. 

Grinder Response for Slow Response for Fast Difference 
1 1.22 1.96 0.74 
2 1.63 1.80 0.17 
3 2.42 3.01 0.59 
4 3.12 3.05 -0.07 
5 0.76 1.23 0.47 
6 4.23 4.89 0.66 
7 1.58 1.30 -0.28 
8 2.81 3.17 0.36 
9 2.19 2.94 0.75 
10 3.75 3.90 0.15 
11 1.66 2.28 0.62 
12 3.80 4.40 0.6 
    

AVERAGE XL=2.431 XH=2.828 XD=0.3967 
Deviation sL=1.118 SH=1.171 sD=0.335 
Samples nL=12 nH=12 nD=12 

 
 
Is there a statistically significant difference between slow and fast?  Time for the ol’ two-
sample t-test.  Let’s compare data from the fast and slow grinding speeds.  I propose the 
null hypothesis:  H0: L = H 

 
Pooled standard deviation: 
 
 sp

2 = {(nL-1)sL
2 + (nH-1)sH

2} / {(nL-1)+(nH-1)}= 1.311,  sP = 1.145 
 
 
 t0 = (XH - XL)/{(sp

2(1/nL+1/nH)}1/2 = 0.849 
 
 
From t-distribution table, for 95% confidence (5% “unconfidence” – 2.5% confidence 
interval) and N-k degrees of freedom (22 df), 
t/2, df = t0.05/2, 22 = t0.025, 22 = 2.074 
 
Since t0 < t/2, df (0.849<2.074) we fail to reject the null hypothesis.  It appears that cutting 
speed has no statistically significant effect.  Again, the reason we can not reject the null 
hypothesis - the reason we can not say for sure that grinder speed really makes a 
difference - is because the variation in the data points is large compared to the difference 
in mean values. 
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BUT WAIT A MINUTE!  Each machine produced one Fast and one Slow specimen.  
The fast and slow data is “paired” in regards to which machine produced which test 
specimens.  If the difference in the machines contribute to the variation of the data, can 
we not “filter out” this effect if we determine the difference between Fast and Slow on 
each machine?  Would that make a difference in our conclusion?  Let’s find out. 
 
What are we to compare?  In the two-sample t-test we posed the null hypothesis which 
stated L = H.  The null hypothesis for paired data is that the difference (between the fast 
and slow data from each machine) is zero: L - H = 0.  We will subtract the data from 
Fast and Slow for each machine (this is the “Difference” column in Table 4). 
 
H0:  D = 0  Null hypothesis states that the sample of data comes form a distribution of 
data which true mean value is zero. 

 
For Paired t-test: 

 t0 = XD / {sD(1/nD)1/2}  sD = { (1/(nD-1)) 


Dn

i 1

(di - XD)2 }1/2  

 
Where subscript D stands for “difference”.  For our data, sD = 0.335, t0 = 4.11 
 
Need t /2, df  from a t-distribution table.  Again, let’s use 95% confidence and nD - 1 
degrees of freedom (df). t 0.05/2, 11 = t 0.025, 11 = 2.201.  Since t0 > t/2, df   we reject the null 
hypothesis at the 5% level of significance.  Therefore, the difference is NOT zero.  So 
now we conclude that the grinding speed DOES make a difference! 
 
Why did we reach a different conclusion????  Which is correct?  It is becoming clear 
why statistics is such a popular subject!!!! 
 
Let’s plot the data to “see” what it looks like.  First, let’s plot the data from the Fast and 
Slow grinding speeds: 
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0 1 2 3 4 5

Mirror Quality

Slow Speed

Fast Speed

 
Figure 1 - data from Fast and Slow grinding speeds. 
 
The high speed produces a higher quality, but there is a large variation in the data.  We 
can not be confident that there is a difference. 
 
We now plot the data for the difference between Fast and Slow on each machine: 

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Mirror Quality Difference (Fast - Slow) for Each Machine

difference

 
Figure 2 - difference between Fast and Slow data on each machine. 
 
It certainly appears that the difference is not zero (there is an effect of grinding speed).  
Why are we reaching a different conclusion? 
 
What we are trying to determine is “if we collect additional data, what is the probability 
that the mean values of our two sets will converge”.  Looking at the data in Figure 1, is 
there a reasonable probability that if we took one more measurement at Fast speed it 
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could give a response of about 0.8?  Could an additional Slow speed result in a 
measurement of 4.8?  Let’s plot these two new data points: 

0 1 2 3 4 5

Mirror Quality

Slow Speed

Fast Speed

 
Figure 3 - data from Fast and Slow grinding speeds, with one additional data point for 

each. 
 

These two new data points do not “stand out” as being unlikely.  Therefore, based on the 
graph above, it intuitively seems possible that these “potential” new data points could 
likely occur.  Figure 3 shows that if these two PROPOSED data points really occurred, 
the mean values would converge.  Since there appears to be a reasonable probability that 
this will occur, we may loose confidence that grinding speed has an effect. 
 
However, are the two proposed data points really likely to occur?  They do not appear to 
be outliers.  But remember, the data from Fast and Slow are not independent if they are 
produced on the same machine.  How likely is it that a single machine will produce these 
data points?  Let’s plot the difference of data with this PROPOSED data point included: 

New data 

New data 
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-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
 

Figure 4 - difference between Fast and Slow data on each machine with addition point. 
 
Figure 4 shows the proposed new data point is very much different.  It is VERY 
UNLIKELY that this would actually occur (unless a mistake were made).  While it is not 
unlikely a machine could produce Fast = 0.8 or Slow = 4.8, it is unlikely for the same 
machine to produce Fast = 0.8 and Slow = 4.8.  So our proposed additional test point is 
very unreasonable.  But we did not detect its “unreasonableness” by looking at the Fast 
and Slow data independently, the statistical information was too weak. We only detected 
it after comparing differences.  Since we can now conclude that grinding speed does have 
an effect, if we were to collect an additional data point, it is likely to improve our 
confidence in our conclusion regardless how we analyze the data. (So in reality, the next 
data points will NOT likely be Fast=0.8 and Slow = 4.8 on the same machine). 
 
So which of the above two methods is correct?  They are both correct, but the latter 
method, which took advantage of our pairing the data, was more powerful.  We would 
have come to the conclusion that they are indeed different in our first attempt if we had 
taken more data points - but that costs money.  What we have done by pairing was “filter 
out” a portion of the error introduced by machine variability.  If you look at the data, you 
can see that there is large variation in the raw data recorded for fast and slow speeds.  But 
much of this variation is caused by specific machines.  In other words, the machines 
introduced error which caused large variability.  We removed that portion of the 
variability in our analysis by comparing differences on each machine. 
 
Pairing is a special case of Blocking.  We will elaborate on Blocking next.  Before 
moving on, let’s reconsider the previous “trout” example.  Could we have employed 
“pairing” to improve the analysis?  The answer is “no, not as the problem was posed”.  
There was nothing common between the two sets of data that introduced variation that 
could be isolated.  However, if we wanted to measure the trout at various times during 
the year, say on the first day of each month, then we could “pair” the measurements taken 
each month.  Since the trout length may vary throughout the year, we could expect 
variation from month to month.  That added variability will cause the standard deviation 
to increase, and trying to determine if the two rivers produce different sized fish becomes 
more difficult.  Pairing the data filters out that added variability. 
 
 

Difference 
between new data 
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Blocking 
 
The DOE we used in the grinder problem consisted of two treatments (fast and slow 
grinder speeds) with 12 blocks (each machine was a block).  We “blocked by machine.”   
 
What about more than two treatments, say k number of treatments (k2).  We will need 
to extend the idea of paired t-testing to new levels of confusion! 
 
 
Equations etc., to be used for “blocked” experiments: 
 
Table 5 - ANOVA equations for Randomized Blocks 
Source Sum of Squares df Mean Square F 
 
Treatment 

 

SSt = 


k

i 1

b(Xi-XT)2 

 

 
k-1 

 
SSt/(k-1) 

 
MSt/MSe 

 
 
Block 
 

 

SSb = 


b

j 1

k(Xj-XT)2 

 
b-1 

 
SSb/(b-1) 

 
MSb/MSe 

 
Residual 
(error) 
 

 

SSe = 


k

i 1



b

j 1

(xij-Xi-Xj+XT)2 

 
(k-1)(b-
1) 

 
SSe/{(k-1)(b-1)} 

 

 
Total 
 
 

 

SStot = 


k

i 1



b

j 1

(xij-XT)2 

 
 
kb-1 

  

Xj is the mean value for the jth block 
b is the number of blocks 
 
 
Example 
Objective:  determine if three test laboratories produce the same results when measuring 

the strength of a material. 
 
Given: 

Ten sheets of material (composite lay ups) are to be used for experimentation. 
Four test specimens can be produced from each sheet. 

 
Extraneous variables: 

sheet-to-sheet variability 
 

Dependent variable 
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results produced by Laboratory A, B and C 
 
Experimental Design: 

Since tensile properties may vary slightly from sheet to sheet, we should "block by 
sheet".  Three specimens should be used from each sheet, and each laboratory should 
test one of the specimens (block).  If we were to use all four specimens from each 
sheet, one laboratory would be testing two specimens from the same sheet, while the 
other laboratories would test only one.  If that sheet did have a different strength than 
the other sheets, the data would be biased.  Therefore, the fourth specimen from each 
sheet can be an extra in case a lab damages their specimen.  If we were able to make 
only two specimens from each sheet, then we would be unable to block by sheet. 
 
The selection of each specimen should be randomly assigned to each laboratory (in 
other words, Laboratory A should not always get the specimen cut from the upper left 
corner of the sheet).  If there is a systematic (consistent) variation of material strength 
as a function of location within the sheet, randomization will prevent this error 
leading to false conclusions. 

 
IDENTIFY on each specimen the sheet number. 
 
Send each laboratory their ten test specimens.  Since each laboratory is independent, we 
will not attempt to randomize run order between the laboratories.  Also, since we have 
blocked by batch, we do not worry about the order in which the specimens are tested.  
Results of Testing (failure stress, ksi)  
 
 Sheet # Lab A  Lab B  Lab C  Block Means 
 1  70 73 71 71.3 
 2  64 65 64 64.3 
 3  82 80 83 81.7 
 4  75 78 73 75.3 
 5  72 74 70 72 
 6  67 72 64 67.7 
 7  69 70 72 70.3 
 8  59 65 63 62.3 
 9  81 86 78 81.7 
 10 79 81 79 79.7 
 
treatment means  71.8 74.4 71.1 72.6 
 
NOTE:  Blocking will not change the results, it changes how we can analyze the results.  
If each sheet of material is somewhat different than the others, then variability will be 
introduced in to the results.  By properly blocking, this variability is removed or “filtered 
out” from the variability due to the different laboratories. 
 
Response (the measured value) is a function of the overall experimental mean value, the 
effects of treatment (laboratory), the block effects (sheets), and random error: 
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Yij =  + j +j + ij 

 
For this example, there are three treatments (Lab A, B, C) and 10 blocks (each sheet is a 
block). 
 
Analyzing the results based on blocking (see Table 5 for equations): 
Source Sum of Squares df (degrees of 

freedom, DOF) 
Mean Square F 

Laboratory 
(treatment) 

46.87 k - 1 = 2 23.43 MSt/MSe= 5.61 

Sheet 
(block) 

1280.97 b - 1 = 9 142.33 MSb/MSe= 
34.10 

Residual 
(error) 

75.13 (k - 1)(b - 1) = 
18 

4.17  

Total 1402.97 k*b - 1 = 29   
 
 
From F-table for treatment conditions:  (FDOFtreatment,DOFerror, confidence)=F 2, 18, 0.05 = 3.55 
The treatment (laboratory) effect is statistically significant (5.61 > 3.55).  Therefore, the 
laboratories do produce different results.  Laboratory B systematically produced higher 
test results. 
 
From F-table for sheet (block) conditions: FDOFblock,DOFerror, confidence F 9, 18, 0.05 = 2.46 
The block effect is significant (34.10 > 2.46), in other words, the sheets did behave 
differently. 
 
Looking at the raw data, do you think we would have come to the same conclusion had 
we not blocked? 
 
NOTE about blocking:  As the above two examples show, blocking can increase the 
statistical power.  It is HIGHLY recommended to block the data wherever you believe a 
specific extraneous variable may be a culprit.  Typical extraneous variables that are 
blocked include batch, test machines, production machines, operators, and day or shift (if 
your experiment goes more than one day, it is a good idea to include "day" as a block - 
things may change the next day). 
 
Within each block all treatment variables must be conducted at an equal number of 
levels.  For the above example, the treatment variable (laboratory) had three “levels” (the 
three “levels” being, Laboratory A, B and C).  Each laboratory had to test the same 
number of specimens from each sheet as the other laboratories; each tested one sample 
from each sheet.  If in the previous trout example, we blocked by time (eg. month), then 
we would have to measure the length of trout in each river at the same time.  We could 
not measure the lengths from the Abiqua on the first of each month and the Breitenbush 
on the 15th. 



 

ME 403 – Engineering Design: Product Realization  30

 
 
RECAP: 
We have covered several aspects of experimentation, let’s review them. 
 
Repetition - measuring the same object more than once, or taking another data point with 
out resetting up the experimental conditions.  Decreases measurement errors to a limited 
degree. 
 
Replication - requires completely redoing the experimental conditions.  In other words, 
setting up the conditions as identically as possible to produce another measurement.  
Replications are very important to estimate the experimental error.  It shows the effects 
of set-up, and other unknown extraneous variables. 
 
Randomization - ABSOLUTELY NECESSARY to assure systematic errors are 
eliminated.  Randomization almost always requires more effort and takes more time than 
not randomizing.  It often seems silly and pointless to the "uninformed" but don’t get lazy 
- DO IT!!  Otherwise it WILL COME BACK to bite you! RANDOMIZE, 
RANDOMIZE, RANDOMIZE - -  ALL EXPERIMENTS! 
 
Blocking (and Pairing) - Blocking can greatly increase the statistical power - you get 
more bang for your buck!  It requires you to group experimental runs in such a way that 
you have an equal number of "low" values and "high" values of each experimental factor 
with in every "block." 
 
There are two things left to discuss regarding Design of Experiments:  factorial 
experiments and fractionated designs.  Factorial designs are where every possible 
combination of factor levels is tested.  Fractionated designs are where not every possible 
combination is actually tested, but it is arranged in such a way that a statistical model can 
be generated that "fills in the blanks." 
 
 
FACTORIAL EXPERIMENTS. 
 
We will limit our discussion to experiments with two levels per factor.  Two level 
designs are ideal for screening experiments where you are trying to identify what factors 
actually have an effect.  It is also ideal for factors that have a linear effect on the response 
(however, it is unlikely you will know this before the experiment).  This type of 
experiment has the capability of determining optimal values (or at least close to optimal) 
for the factors based on a desired outcome.  However, it is assumed that the response is 
linearly related to the factor settings.  The more non-linear the response truly is, the less 
reliable using two levels becomes (unless you are not interested in interpolating between 
the factor levels). 
 
The total number of possible combinations for experiments with multiple factors, all with 
two possible levels is 2k, where k is the total number of factors (test variables). If there 
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are three factors, then eight possible conditions exist (23=8).  Often, it is desired to 
include several more variables than this in an experiment.  For five variables, there would 
be 32 total possible combinations, and the number grows very quickly for more variables. 
 
Example 
Objective:  determine which set of conditions provide the longest service life for the shaft 

running on a set of lubricated bushings. 
 
Test Variables (Factors):  there are three factors, each at the two levels: 
 

lubrication: petroleum based or synthetic 
surface finish  64 or 32 rms 
shaft material AISI 4340 or AISI 4140 

 
The two levels of any factor are usually referred to as the +1 and -1 level, or the + and - 
levels.  The + and - are referred to as “coded values”.  Table 6 shows how we have 
arbitrarily labeled each factor and its level.  For example, we will call “lubricant” Factor 
1, and Factor 1 at its + level is “synthetic lubricant”. 
 
Table 6 - Factor numbers and levels. 

Factor 
Number 

Factor Name Factor Level  

  (-) (+) 
1 Lubricant Petroleum synthetic 
2 Surface finish 32 rms 64 rms 
3 Shaft material 4340 4140 

 
Since there are three factors each at two levels, to study each possible combination 
requires 23 = 8 test runs or “design points.”  Table 7 is the “design matrix”.  This shows 
the factor levels for each of the eight experimental design points.  For example, when we 
conduct Design Point 1 all three factors are at their + level.  This means we will use 
synthetic lubricant on a surface finish of 64 rms using AISI 4140 material. 
 
Table 7 - Design Matrix 

Design 
Point 

Coded Factor Levels   Actual Factor Levels   

 1 2 3 1 2 3 
1 + + + synthetic 64 4140 
2 - + + petroleum 64 4140 
3 + - + synthetic 32 4140 
4 - - + petroleum 32 4140 
5 + + - synthetic 64 4340 
6 - + - petroleum 64 4340 
7 + - - synthetic 32 4340 
8 - - - petroleum 32 4340 
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We can represent 23 factorial experiments pictorially: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that this is a balanced design.  Each factor is tested an equal number of times at 
each level, and that for each level, all other factors are varied an equal number of times.  
Of the eight total runs, Factor 1 is ran at its “+” level four times, and Factor 2 and Factor 
3 are each ran twice at their “+” levels and twice at their “-“ levels while Factor 1 is at its 
“+” level.  And so forth. 
 
Since we have three factors, we have 3 “dimensions”.  If we have 4 factors, drawing the 
factorial space is not possible in this universe. 
 
Since we want to estimate random error, we need to replicate our experiment, twice.  So 
we will need 8 * 3 = 24 total runs.  It is possible to estimate the errors without 
replication, but the methods are beyond the scope of this class. 
 
We want to eliminate the possibility that systematic errors will be introduced, so we need 
to randomize the run order.  Using complete randomization between all 24 runs gives us 
Table 8, below. When creating the table, we leave space to record the response.  It is 
better to fill in the response in a table chronologically sorted by run number than by other 
groupings. This reduces the likelihood of mistakes - just start at the top and work your 
way down.  The “Run” column shows us the order in which we will conduct the 
experiment.  The “Design Point” refers to the conditions shown in Table 7.  Table 8 
includes values for the response measured during the experiment. 
 
Table 8 - Experiment in chronological run order. 

Run Design 
Point 

Factor 1 Factor 2 Factor 3 Response 

1 4 petroleum 32 4140 9325 
2 7 synthetic 32 4340 5398 
3 7 synthetic 32 4340 5126 
4 2 petroleum 64 4140 9450 

Factor 3 

++- -+- 

+-+ 

+-- --- 

--+ 

Factor 1 

Factor 2 

+++ -++ 
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5 3 synthetic 32 4140 8235 
6 5 synthetic 64 4340 4598 
7 6 petroleum 64 4340 7983 
8 3 synthetic 32 4140 8109 
9 5 synthetic 64 4340 4728 
10 2 petroleum 64 4140 9298 
11 3 synthetic 32 4140 8212 
12 6 petroleum 64 4340 7763 
13 8 petroleum 32 4340 8243 
14 2 petroleum 64 4140 9642 
15 1 synthetic 64 4140 8456 
16 4 petroleum 32 4140 9418 
17 5 synthetic 64 4340 4193 
18 6 petroleum 64 4340 8129 
19 1 synthetic 64 4140 9212 
20 4 petroleum 32 4140 9537 
21 8 petroleum 32 4340 8149 
22 7 synthetic 32 4340 5234 
23 1 synthetic 64 4140 8850 
24 8 petroleum 32 4340 8427 

 
Where to begin?  What information is possible from this regarding the effects of the 
factors?  We should be able to determine the main effects of the 3 factors as well as their 
interactions with other factors.  We will start with the main effects.  To do this, we 
determine the mean values of each of the three factors averaging over the levels of the 
other two factors. 
 
Table 9 - Mean Values of Main Effects: 
Factor (-) level mean 

response 
(+) level mean 

response 
lubricant petroleum 8780 synthetic 6696 
surf finish 32 rms 7784 64 rms 7692 
shaft mat’l AISI 4340 6498 AISI 4140 8979 
 
To understand these better, graphing helps: 
 
 
 
 
 
 
 
 
 
 
 
 6000 

7000 

8000 

9000 
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 petr. synth 32rms 64rms 4340 4140 
 
 Lubricant Surface Finish Shaft Mat’l 
 
 
Each data point on the charts is the average value for the particalar factor level. From 
these charts, it appears the petroleum lubricant outperforms the synthetic lubricant and 
the 4140 outperforms 4340.  However, it does not appear that surface finish had much of 
an effect.  However, appearances have misled us before.  We will need to apply statistics 
to determine if the effects are “real” (statistically significant).  We will do this later. 
 
We also have the ability to evaluate interactions.  Let’s look at two-way interactions.  We 
take the average of the response for the appropriate factors (averaging over the 3rd 
factor). 
 
lubrication X  finish 
lubricant level surf. finish level mean response 

+ (synth) + (64 rms) 6673 
+ (synth) - (32 rms) 6719 
- (petrol) + (64 rms) 8711 
- (petrol) - (32 rms) 8850 

 
We call the interaction between lubricant and finish “lube X finish” (lubricant cross 
finish).  We can create similar tables for lube X shaft mat’l and for finish X shaft mat’l: 
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lube X shaft 
lubricant level shaft mat’l mean response 

+ (synth) + (4140) 8512 
+ (synth) - (4340) 4880 
- (petrol) + (4140) 9445 
- (petrol) - (4340) 8114 

 
finish X shaft: 

finish level shaft mat’l mean response 
+ (64) + (4140) 9151 
+ (64) - (4340) 6232 
- (32) + (4140) 8806 
- (32) - (4340) 6763 

 
then we can create the following charts: 
 
 
 
 
 
 
 
 
 petr. synth   4340 4140 
 
 Lubricant  petr. synth Shaft Mat’l  
 
  Lubricant 
 (lube X finish) (lube X shaft) (shaft X finish)  
 
The parallel lines in the lube X finish interaction shows there is little or no interaction 
between these two factors.  In other words the change in the response between lube types 
is the same regardless of shaft finish.  There is a very strong interaction between lube and 
shaft material.  The 4340 shaft is significantly affected by selection of lube type whereas 
4140 is only moderately affected.  There appears to be some interaction between shaft 
material and surface finish. 
 
Based on the above graphs, it appears that using petroleum lubrication with 4140 shaft 
material is the best selection.  The surface finish does not appear to have much of an 
effect.  However, as we have learned, graphs don’t always tell us the full story and can 
lead us down erroneous paths.  So let’s be more rigorous. 
 
Let’s start with a better table to show all main effects and interactions.  The interactions 
between factors is analyzed as if they were a factor as well.   
 

32 rms 

64 rms 

6000 

7000 

8000 

9000 

4340 

4140 

64 rms 

32 rms 
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Table 10 - Experimental main effects and interactions 
Design 
Point 

Fac 1 
(lube) 

Fac 2 
(surf 

finish) 

Fac 3 
(shaft 
mat’l) 

1 X 2 
(12) 

1 X 3 
(13) 

2 X 3 
(23) 

1 X 2 X 3 
(3-way 

interaction, 
123) 

1 + + + + + + + 
2 - + + - - + - 
3 + - + - + - - 
4 - - + + - - + 
5 + + - + - - - 
6 - + - - + - + 
7 + - - - - + + 
8 - - - + + + - 

 
The codes (+/-) for the interactions is obtained by “multiplying” the codes of the 
respective factors.  Example, 1 X 2 for design point 1 is + because (+) X (+) is (+). It is 
also + for design point 4 because (-) X (-) is +.  A reminder, Factor 1 at “+” level means 
synthetic lubricant, “-“ level is petroleum lubricant, etc. 
 
We will create a table with the actual data from each of the 24 runs, and determine the 
mean value from the three replicates.  The variation between the replicates estimates the 
experimental error. 
 
Table 11 - main effects and interactions from the experimental data 
 Effects Data 
Design 
Point 

 
m 

 
1 

 
2 

 
3 

 
12 

 
13 

 
23 

 
123 

 
x 11 

 

 
x 12 

 
x13 

 
Xt 


 (xij - Xt)

2 

(summed 
j=1 to 3) 

1 + + + + + + + + 8456 9212 8850 8839 285939
2 + - + + - - + - 9450 9298 9642 9463 59435
3 + + - + - + - - 8235 8109 8212 8185 9005
4 + - - + + - - + 9325 9418 9537 9427 22585
5 + + + - + - - - 4598 4728 4193 4506 155717
6 + - + - - + - + 7983 7763 8129 7958 67891
7 + + - - - - + + 5398 5126 5234 5253 37515
8 + - - - + + + - 8243 8149 8427 8273 39992

   total: 678,079 
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 m 1 2 3 12 13 23 123 
sum of (+) 61905 26783 30767 35915 31045 33256 31828 31477 
sum of (-) 0 35121 31138 25990 30860 28649 30077 30428 
diff 61905 -8338 -371 9925 185 4607 1751 1049 
effect 7738 -2085 -93 2481 46 1152 438 262 
SE         
to         
t .05/2, 16         
significant?         

 
diff = (sum +) - (sum -) 
 
effect = diff/n+  where n+ is the number of +’s in the column 

 
The second table is the sum of all (+) values, the sum of all (-) values, their difference 
and the calculated effect.  To calculate these, for example, sum of (+) for factor 1 (1 at 
the top of the column) we add 8839+8185+4506+5253=26783.  The effect is -8338/4=-
2085 (n+ = 4 since there are four + terms) 
 
Determine the standard error of an effect: 
 

N = total number of experimental runs (N=24 in our experiment) 
ri = number of replicates for the ith treatment, i = 1, 2, ...,2k (ri=r1=r2=...=r8=3) 
k = number of factors (k=3, in our experiment) 

 

mean square error = se
2 = 1/(N - 2k) 

 

k
l

l

r

j

2

1 1

(xlj - Xl)
2 

 

variance of an effect = Var(effect) = se
2/(22k-2) 



k

l

2

1

(1/rl) 

 
if all ri are equal, in other words, each replicate has the same number of treatments (as 
our example has), then 
 

Var(effect) = 4se
2/N 

 
For our example: 
 

se
2 = 1/(N - 2k)

 

k
l

l

r

j

2

1 1

(xlj - Xl)
2 = 1/(24 - 23) (678,079) = 42,380 

 
Var(effect) = 4se

2/N = 4*(42380)/24 = 7064    
 
standard error (SE) of an effect = (Var(effect))1/2 = 84.0 
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The standard error is the same for all factors.  It is a single estimate of the underlying 
experimental error (mean square error). 
 
Now we want to determine which factors are significant.  We compare the effect of the 
factor with the mean square error.  We use the t-test: 
 

let t0 = effect/standard error of effects 
 
as with our prior t-test examples, we need to compare t0 with a value from the t-table.  
Again, lets use 5% reference value (95% certainty level), with N-2k degrees of freedom 
(16), t=2.12.  We need to complete Table 11 (last four rows): 
 
Table 12 - completed analysis table 
  Effects Data 
Design 
Point 

 
m 

 
1 

 
2 

 
3 

 
12 

 
13 

 
23 

 
123 

 
x 11 

 

 
x 12 

 
x13 

 
Xt 


 (xij - Xt)

2 

 
1 + + + + + + + + 8456 9212 8850 8839 285939
2 + - + + - - + - 9450 9298 9642 9463 59435
3 + + - + - + - - 8235 8109 8212 8185 9005
4 + - - + + - - + 9325 9418 9537 9427 22585
5 + + + - + - - - 4598 4728 4193 4506 155717
6 + - + - - + - + 7983 7763 8129 7958 67891
7 + + - - - - + + 5398 5126 5234 5253 37515
8 + - - - + + + - 8243 8149 8427 8273 39992

   total: 678,079 
 

 M 1 2 3 1X2 1X3 2X3 1X2X3 

sum of (+) 61905 26783 30767 35915 31045 33256 31828 31477 

sum of (-) 0 35121 31138 25990 30860 28649 30077 30428 

diff 61905 -8338 -371 9925 185 4607 1751 1049 

effect 7738 -2085 -93 2481 46 1152 438 262 

SE 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 

t0 92.1 -24.8 -1.1 29.5 0.5 13.7 5.2 3.1 

t .05/2, 16 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 

significant? yes yes no yes no yes yes yes 

 
Comparing the absolute values of t0 with t/2,  shows the only terms that are not 
statistically significant are factor 1 and the interaction between factors 1 and 2. 
 
Conclusions: 
In general, petroleum lubricant worked best as did AISI 4140 shaft material.  Other data 
is required, such as costs, to determine which set of conditions would be the best to 
choose.  But the best performance was petroleum lubricant on AISI 4140 steel shaft. 
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Interactions - by studying the interaction effects, especially looking at the charts, it seams 
that if AISI 4140 steel is used, selection of lubricant and shaft finish are not very critical.  
However, if AISI 4340 is used, then petroleum is highly recommended. 
 
HOMEWORK 
 
You have just completed a two factor factorial experiment, with each factor at two levels. 
The experiment included three replicates, so a total of (22)X3=12 runs.  Factor 1 was two 
brands of chemical (Chem A and Chem B), and Factor 2 was the temperature (100F or 
200F).  The response was the time required for a chemical reaction to reach completion 
(seconds).  Slow (long time) is best. 
 
 
Run Design 

Point 
Factor 1 Factor 2 Factor 1 Factor 2 Response 

(seconds) 
1 1 + + Chem A 100F 35 
2 4 - - Chem B 200F 11 
3 4 - - Chem B 200F 8 
4 3 + - Chem A 200F 347 
5 2 - + Chem B 100F 315 
6 2 - + Chem B 100F 327 
7 3 + - Chem A 200F 359 
8 3 + - Chem A 200F 351 
9 4 - - Chem B 200F 6 
10 2 - + Chem B 100F 320 
11 1 + + Chem A 100F 33 
12 1 + + Chem A 100F 38 

 
a) Complete the graphs below 
b) Fill in the blanks in the tables on the back 
c) Which effects are significant? 
d) What is the best setting for the two factors? 
 
You may use Excel, hand calculator, or what ever you desire to perform the calculations. 
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Main Effects: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two-way interaction (1X2): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Effects Data 
Design 
Point 

 
m 

 
1 

 
2 

 
12 

 
x 11 

 

 
x 12 

 
x13 

 
Xt 


 (xij - Xt)

2 

 
1 + + +  35 33 38 35.33 12.67
2 + - +  315
3 + + -  347
4 + - -  11
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 m 1 2 12 
sum of (+)     
sum of (-)     
diff     
effect     
SE     
t0     
t .05/2, 16     
significant?     
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 HOMEWORK 
 
1)  Reconsider the grinder problem discussed before.  We were given the fact there were 
12 grinder machines and we wanted to determine if fast or slow grinding was better.  We 
created blocks based on machine (12 total blocks) to improve the power of the 
experiment.  One technique that was employed was complete randomization. 
 
Question:  was complete randomization the best thing to do?  Consider the following 
proposal.  Discuss which method you believe would create a better experiment, the above 
fully randomized experiment or the randomization proposed next: 
 
Randomly select six of the 12 machines.  On these six machines, the first specimen will 
be set to fast grinding speed and the second specimen will be set to slow.  The other six 
machines will grind the first specimen at slow speed, and the second specimen at fast 
speed.  No other randomization will be used.  The following is the result of this proposal: 
  
 Run Grinder Speed Run Grinder Speed 
 1 1 Slow 2 1 Fast 
 3 2 Slow 4 2 Fast 
 5 3 Fast 6 3 Slow 
 7 4 Slow 8 4 Fast 
 9 5 Slow 10 5 Fast 
 11 6 Fast 12 6 Slow 
 13 7 Slow 14 7 Fast 
 15 8 Fast 16 8 Slow 
 17 9 Fast 18 9 Slow 
 19 10 Slow 20 10 Fast 
 21 11 Fast 22 11 Slow 
 23 12 Fast 24 12 Slow 
 
2)  Design an experiment to meet the following objective.  Discuss what techniques you 
have used and why. 
 
Given:  Your company has extensive data on the fatigue life of a specific polymer.  

However, all of the data was taken with low frequency testing (slow strain rates).  
There is a new application for this polymer, but the loading will by high frequency 
(high strain rates).  You can not afford to duplicate all of the testing at high strain 
rates, but have decided to do a head-to-head comparison.  If high strain rates perform 
no worse than low strain rate, you will go ahead and use the polymer in the new 
application using the extensive fatigue data you have at slow strain rates. 

 
Objective:  design an experiment to determine if high strain rate fatigue data will be no 

worse than low strain rate. 
 
Other information: 

You can use no more than 24 samples. 
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You have 5 batches of polymer to make samples from. 
You have 3 fatigue testing machines available to you. 
You have reason to believe there may be variations in batches of material, and that 
the test machines do not produce identical results. 
You may use any number of batches (but not more than 5) and one or more test 
machines. 
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 FRACTIONATED EXPERIMENTS 
 
We have just completed looking at full factorial experiments.  We kept the number of 
variables to a minimum for two reasons:  the number of experimental runs required 
increases as 2k, which gets big fast!  Also, the number of higher order interaction 
increases as well.  The higher order interactions are usually negligible, so their presence 
just complicates the analysis.  For example, a 6 factor experiment would require 26 
treatments (64) not including any replication.  There would also be 63 effects: 
 
six main effects, fifteen 2-way interactions, twenty 3-way interactions, fifteen 4-way 
interactions, six 5-way interactions, and one 6-way interaction. 
 
So we would spend a lot of resources conducting this test (64 treatments is a  large 
number), and we would have a lot to analyze – what really caused the variation in the 
response?  Was it the fact that factors changed, or was it the interaction between two or 
three factors? 
 
Fractionated experiments are “slices” of full factorial experiments.  They are designed in 
such a way as to reduce the number of runs required.  The “cost” associated with this is 
losing the ability to analyze higher order interactions.  Highly fractionated experiments 
require few runs, but may only be able to analyze main effects and no interactions.  This 
may be appropriate for screening experiments, where you are interested in finding the 
“big hitters”, but usually it is desirable to analyze at least some 2-way interactions.  This 
is all possible with properly designed fractionated experiments. 
 
Remember that the design point defines the settings of all the factors.  Notice that for 
each design point there are seven effects: main effects of factors 1, 2, and 3, three 2-way 
interactions (12, 13, 23) and one 3-way interaction (123).  This means the response (what 
we are measuring) has seven different “factors” (actually, factors and combinations of 
factors) influencing its magnitude.  For example, the effect of the interaction between 
factors 1 and 2 (12) behaves as if it were its own entity.  For design points 1, 4, 5, and 8 it 
is as if that entity is at its (+) level, and for the other four design points, it is at its (-) 
level. 
 
Let’s look at a design matrix for a 2 factor experiment: 
 
Table 13 – two factor design matrix 
Design 
Point 

Fac 1 Fac 2 1 X 2 

1 + + + 
2 - + - 
3 + - - 
4 - - + 
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This requires only 4 treatments for a full factorial experiment.  The response will be 
affected by three “entities” or effects:  main effect of factor 1, main effect of factor 2, and 
2-way interaction between factors 1 and 2.  Table 14 shows an example of how the 
results (response) of this experiment depends on three effects even though it contains 
only two factors. 
 
Table 14 – two factor design matrix and response 
Design 
Point 

Fac 1 Fac 2 1 X 2 Response 

1 + + + 25 
2 - + - 75 
3 + - - 75 
4 - - + 25 

 
Lets make three graphs; one for each effect.  We plot the average value for the + and – 
values: 
 
 
 
 
 
 
 
 
 Factor 1 Factor 2 Interaction 1 X 2 
Notice that we treat the interaction (1X2) as if it were a factor.  What this tells us is that 
changing Factors 1 and 2 by themselves has little effect (when averaged together), but 
there is a strong interaction between them.  Interaction means that the change in the 
response as a result of changing Factor 1, will depend upon the level of Factor 2.  In this 
example, the response decreases significantly when Factor 1 changes from “+” to “– “ if 
Factor 2 is “+”, but if Factor 2 is “-“, the response increases when Factor 1 changes from 
“+” to “-“. 
 
It is likely we will have some knowledge about the behavior of an experiment before we 
run it since we are usually familiar with what we are investigating.  So let’s say that we 
KNOW in advance that there is no interaction between factors 1 and 2 (we would NOT 
expect the results in Table 14).  We can replace the 1X2 column with a third factor 
(Factor 3).  Now we are able to study three factors in only 4 treatments!  
 
To demonstrate this, let us consider another farming example.  Suppose we want to three 
factors:  two different seeds (Seed E and Seed F), two watering conditions (irrigated, not 
irrigated), and two fertilizer conditions (fertilized, not fertilized).  We believe the effects 
of interaction between any of the factors will be much less than the effects of the factors 
themselves.  We want to do this experiment in only four treatments.  Table 15 shows the 

50 

- + 

50 

- + 
25 

- + 

75 
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design matrix.  We conduct the experiment and include the results in this table.  We 
replace the “+” and “-“ with actual values. 
 
Table 15 – Three factor fractionated experiment 
Design 
Point 

Factor 1 
(seed) 

Factor 2 
(irrigation) 

Factor 3 
(fertilizer) 

Response 
(bushels) 

1 E Yes Yes 30 
2 F Yes No 10 
3 E No No 10 
4 F No Yes 30 

 
We have used the third column in Table 13 to include a third factor (fertilizer).  Looking 
at the response values, we can see that the seeds do not have an effect – both seeds 
produced 20 bushels on average.  The same is true for irrigation.  Both the irrigated and 
non-irrigated fields produced 20 bushels on average.  However, the fertilized did have a 
significant effect.  Using fertilizer resulted in 30 bushels, where as without fertilizer, only 
10 bushels.   
 
Table 15 is very similar to Table 14.  Based strictly on the data presented in Table 15, it 
is not possible to say that fertilizer had an effect.  The third factor (fertilizer) is 
confounded (aliased) with the 1X2 interaction (shown in Table 14).  What we have to ask 
is “is it likely that irrigating seed E will have the same effect as NOT irrigating Seed F”?  
If the answer is yes, then this was the wrong experiment design.  However, if the answer 
is no, then by using this fractionated experiment we have saved the resources necessary 
to conduct a larger experiment. 
 
What we have lost by using only 4 treatments rather than 8 is the ability to distinguish 
between the effect of varying the third factor with the interactions between the first two 
factors.  We have also lost the ability to analyze any of the other interactions that we 
studied in the full factorial experiment. 
 
Since we have replaced 1X2 column with Factor 3, we have confounded (or aliased) 
Factor 3 with the 1X2 interaction.  If Factor 3 shows itself to have a significant effect on 
the response, we are totally unable to determine if it is in fact due to Factor 3 or if it is 
due to interaction between Factors 1 and 2.  In fact, we have also confounded the other 
main effects as well.  We have confounded the main effect of Factor 1 with the 
interaction between Factors 2 and 3, and we have confounded the main effect of Factor 2 
with the interaction between Factors 1 and 3. 
 
Since information costs money and time, we need to make an engineering decision to 
determine that if the cost of lost information outweighs the cost of running more test 
conditions. 
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The fractionated experiment can be shown graphically, similar to the full factorial.  The 
difference is that not all eight corners are investigated, only four are.  The four are 
selected such that each face of the cube contains two data points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have just demonstrated the design for a 2k-p fractionated factorial experiment.  k is the 
number of factors (3 in our example) and p is selected to provide the desired number of 
treatments, N.  In our case, N=4, so p=1:  23-1 = 4. 
 
The example of a 23-1 experiment does not demonstrate how desirable a fractionated 
experiment really can be.  It seems like we lost a lot of information without really 
reducing the number of runs significantly.  However, it does demonstrate the concepts.  
Let’s consider a six-factor experiment to demonstrate a case where fractionation costs 
very little, but saves a lot of effort (time and money). 
 
How many treatments do we need with a six-factor experiment, two levels for each 
factor?  A full factorial experiment would require 26 = 64 treatments.  We want to do this 
experiment in much less than that, and we have decided upon 16 treatments.  We could 
do it in fewer, but that would cause more confounding than we desire.  We need 16 = 26-p 
so p=2.  By selecting 16 treatments, we will have confounding, but confounding will 
occur with 2-way interactions and higher (4-way, etc.).  Main effects will not be 
confounded with 2-way interactions.  It is very unusual to be concerned with interactions 
higher than 2-way.  In fact Taguchi (a Japanese DOE guru) recommends rarely being 
concerned with even 2-way interactions.  His philosophy is to “dig wide, not deep”.  The 
main effects are almost always the key effects and will overwhelm interaction effects.  If 
the main effects are not significant, it is unusual for the interactions to be significant.  
With 16 treatments, a full 4 factor experiment can be conducted.  Therefore, our 5th and 
6th variable will obviously be confounded with higher order interactions.  By doing a 6 
factor experiment with only 16 treatments, we have the following: 

Factor 3 

-+- 

+-- 

--+ 

Factor 1 

Factor 2 

+++ 
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6 variables: 1, 2, 3, 4, 5, 6 16 runs (one-quarter of a full factorial) 
 
confounding with main effects and three-way interactions: 
5 = 123,  6 = 234 (and others shown below) 
 
confounding pattern: 
1 = 235 = 456 = 12346 (factor 1 is confounded with 3-way interactions of factors 2, 3, 5 ; 

and 4, 5, 6, and 5-way interaction of 1,2,3,4,6 - these interactions are also 
confounded with themselves) 

 
2 = 135 = 346 = 12456 
3 = 125 = 246 = 13456 
4 = 236 = 156 = HOI 
(HOI = higher order interactions) 
5 = 123 = 146 = HOI 
6 = 234 = 145 = HOI 
12 = 35 =HOI 
13 = 25 = HOI 
14 = 56 = HOI 
15 = 46 = HOI 
16 = 45 = HOI 
 

23 = 15 =46 = HOI 
24 = 36 = HOI 
25 = 13 = HOI 
26 = 34 = HOI 
34 = 26 = HOI 
35 = 12 = HOI 
36 = 24 = HOI 
45 = 16 = HOI 
46 = 23 = 15 = HOI 
56 = 14 = HOI 
 

The following table illustrates a few of the many aliased terms.  
Example shown in the table below for main factors aliased with 3 way interaction:  5 = 

123 = HOI 
Example shown in the table below for 2-way interactions aliased with other 2-way 

interaction and “Higher Order Interactions (3 way, 4 way, etc.). 12 = 35 =HOI 
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NOTE: this is not a complete table – it is meant to illustrate a few of the many aliases. 
Design Point 1 = 235 

=456 
2 =  

3 ways 
3 =  

3 ways 
4 =  

3 ways 
5 =  

3 ways 
6 = 

3ways 
1x2 = 
3x5 

1 + + + + + + + 
2 - + + + - + - 
3 + - + + - - - 
4 - - + + + - + 
5 + + - + - - + 
6 - + - + + - - 
7 + - - + + + - 
8 - - - + - + + 
9 + + + - + - + 
10 - + + - - - - 
11 + - + - - + - 
12 - - + - + + + 
13 + + - - - + + 
14 - + - - + + - 
15 + - - - + - - 
16 - - - - - - + 

 
 
This is a “Resolution VI” experiment, meaning the main effects are confounded with 
three-way interactions and higher, but no two-way interactions.  Two-way interactions 
are confounded with other 2-way interactions and higher order interactions.  Now if there 
are significant 2-way interactions, they do not interfere with our interpretation of the 
main effects.  However, we are unable to say what the 2-way interactions are since they 
are confounded.  These effects will end up as “noise” in the results.  The conclusion we 
reach regarding main effects will be valid and clear, but will not explain all of the results. 
 
Fractionated experiments are often an acceptable compromise between knowledge and 
cost. 
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Design Matrix for 26-2 = 16 Fractional Factorial 
 
Design Point 1 2 3 4 5 = 123 6 = 234 

1 + + + + + + 
2 - + + + - + 
3 + - + + - - 
4 - - + + + - 
5 + + - + - - 
6 - + - + + - 
7 + - - + + + 
8 - - - + - + 
9 + + + - + - 
10 - + + - - - 
11 + - + - - + 
12 - - + - + + 
13 + + - - - + 
14 - + - - + + 
15 + - - - + - 
16 - - - - - - 

 
We have assigned factor 5 to the 3-way interaction effect (123) and factor 6 with (234).  
No method was provided to show how this was done.  The point being made is that 
fractionated experiments do cause confounding of interactions (aliasing), but that is often 
acceptable. 
 
The intent of this discussion on fractionated experiments was not intended to show “how 
to”; it was intended to illustrate possibilities.  If you need to do such an experiment, 
consult a text on the subject, or a statistician.  Software is available which makes the 
design and analysis relatively simple. 
 
 
Design Resolution 
One final point before leaving the subject of fractionated experiments.  In our last two 
examples, we saw different degrees of confounding.  In the first example, we had main 
effects confounded with 2-way interactions.  In the last example, the 2-way interactions 
were confounded with other 2-way interactions, but the main effects were not 
confounded.  The terminology used to describe these conditions is “resolution”.  Roman 
Numerals (III, IV, V, etc.) denote resolution.  The following describes what this means. 
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Resolution Ability Example 

II Not useful: main effects are confounded with other main effects 
22 − 1 with defining 
relation I = AB 

III 
Estimate main effects, but these may be confounded with two-factor 
interactions (our first example of aliasing) 

23 − 1 with defining 
relation I = ABC 

IV 

Estimate main effects unconfounded by two-factor interactions 
Estimate two-factor interaction effects, but these may be 
confounded with other two-factor interactions (our second example 
of aliasing) 

24 − 1 with defining 
relation I = ABCD 

V 

Estimate main effects unconfounded by three-factor (or less) 
interactions 
Estimate two-factor interaction effects unconfounded by two-factor 
interactions 
Estimate three-factor interaction effects, but these may be 
confounded with other two-factor interactions 

25 − 1 with defining 
relation I = ABCDE 

VI 

Estimate main effects unconfounded by four-factor (or less) 
interactions 
Estimate two-factor interaction effects unconfounded by three-
factor (or less) interactions 
Estimate three-factor interaction effects, but these may be 
confounded with other three-factor interactions 

26 − 1 with defining 
relation I = ABCDEF 

 
Resolution III designs confound main effects with 2-factor interactions (our first 

example) 
Resolution IV designs confound main effects with 3-factor interactions, and 2-factor 

interactions are confounded with one another (our second example). 
Resolution V designs confound main effects with 4-factor interactions, and 2-factor 

interactions with 3-factor interactions. 
etc. 
 
Obviously, the higher the resolution the less confounding.  However, higher resolutions 
are less fractionated; therefore require more treatments (which cost time and money). 
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From: http://blog.minitab.com/blog/applying-statistics-in-quality-projects/design-of-experiments-
fractionating-and-folding-a-doe 

 
FINAL COMMENTS ON DESIGNED EXPERIMENTS 
 
Just as with the design of an object, designing experiments requires balancing many 
competing criteria.  Time and money are traded for information and knowledge.  The 
more you want to know, and the more certain you need to be, the more resources are 
required (time and money). 
 
You now have an understanding of some of the basic concepts with DOE’s.  Even if you 
do not do experimentation yourself, you are now in a better situation to judge the validity 
of someone else’s test data.  If you are going to make engineering decisions based on that 
data, you need to be certain you are interpreting it correctly.  
 
You should now have enough knowledge to know that if you become involved with 
experimentation, you should dig into the subject of DOE’s much deeper.  They can be 
very powerful, especially if you are investigating more than 2 or 3 variables.  A great 
amount of valid data can be acquired with minimal experimental effort.  The effort 
should be put into designing the experiment, not just conducting it.  “Taguchi” designs 
are commonly used “pre-packaged” experiments.  If you are involved with experiments, 
you should investigate these more closely.  
 
 


