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Abstract

For a moduleMR we compute the set of associated primes ofM[x;σ ] over the left Ore extensio
R[x;σ ] for any surjective endomorphismσ of R. This result leads to necessary and sufficient c
ditions under which the associated primes ofM[x;σ ] are precisely the extensions of the associa
primes ofM. We relate these results to previous work regarding the propagation of prime ide
R[x;σ ] and include several illustrative examples.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

LetR be a ring with identity and letσ be an endomorphism ofR. ConsiderS = R[x;σ ],
the left Ore extension. We use the convention that coefficients are written on the le
the defining relation isxr = σ(r)x [1,3]. One question which arises in this construct
is how the prime ideals ofR[x;σ ] are built from ideals ofR. Much of the initial work
regarding the propagation of primes whenR is commutative was done by Irving in [4
The technique pioneered by Irving and modeled by others was to first define the
of a ‘σ -prime’ ideal. This lead to several different inequivalent definitions, all of wh
are based on the usual noncommutative definitions for prime ideals. Conditions wer
given under which, given aσ -prime ideal,I � R, one can concludeIS is prime. We have
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chosen a slightly different tack. This paper grew out of an attempt to place a more
commutative framework on previous work [1], which related the associated prime
of a right R-module,M , to the associated primes ofM[x;σ ]S . We quickly realized this
relationship was greatly simplified by assuming thatσ is surjective. Indeed, with that hy
pothesis, results relating the set of annihilator ideals ofMR and the set of associated prim
of M[x;σ ]S can then be read off easily. Using these results, one is much better off s
computing the associated primes ofM[x;σ ] directly. As a corollary to our main resul
we show that an idealI for which I [x;σ ] is prime is precisely an ideal we define as
σ -associated ideal to someσ -prime moduleNR .

In this section we provide the definitions and statements of the main result and its
laries. In the second section, we discuss several examples outlining the use of these
The last section is devoted to the proofs of several preliminary results and then the pr
the principal results. Before continuing with the development of the main results, I w
like to thank the referee for suggestions which have substantially improved this pap

With minimal notation we can state our main result. We recall, in general, that a no
submoduleN < M is prime if annR(N ′) is constant across all nonzero submodules oN

and in such cases, ann(N) is necessarily a prime ideal. Also a left, right or two-sided id
I is aσ -ideal if σ(I) ⊆ I [3], and is called aσ -invariant ideal if I = σ−1(I ) [4].

Definition 1.1. For any subsetI ⊆ R, let Iσ = ⋂
j∈N

σ−j (I ). We say that a nonzer
submoduleN < M is a σ -prime submodule if(ann(N ′))σ is constant over nonzero su
modules ofN and additionallyσ−1((ann(N))σ ) ⊆ (ann(N))σ .

We note that neither ann(N) nor (ann(N))σ need be prime for aσ -prime submoduleN .
Nevertheless, whenN is σ -prime we refer toI = (ann(N))σ as aσ -associated ideal of
M and letσ -Ass(M) denote the set ofσ -associated ideals. IfI is a σ -associated idea
by definition σ−1(I ) ⊆ I . Moreover,I = (ann(N))σ for someσ -prime submoduleN ,
so I = ⋂

j∈N
σ−j (ann(N)) ⊆ ⋂

j>0 σ−j (ann(N)) = σ−1((ann(N))σ ) = σ−1(I ). Thus a
σ -associated ideal isσ -invariant.

If I is a subset ofR we writeI [x;σ ] for the set of polynomials inR[x;σ ] whose (left)
coefficients are all inI . Even ifI is an ideal ofR, I [x;σ ] need not be an ideal inR[x;σ ].

Theorem 1.2. Let R be a ring with identity and let σ be a surjective endomorphism. For
any right R-module M , Ass(M[x;σ ]) = {I [x;σ ] | I ∈ σ -Ass(M)}.

It is apparent thatI [x;σ ] can be an associated prime ofM[x;σ ] whenI is not a prime
of R. More remarkably,I need not be the annihilator of a submodule ofM , as illustrated in
Example 2.1. However, the following corollary shows thatσ -associated ideals are precise
those ideals which extend to prime ideals.

Corollary 1.3. Suppose σ is surjective. Then the following are equivalent conditions on an
ideal I � R.

(1) I is the σ -associated ideal to some σ -prime module N .

(2) I [x;σ ] is a prime ideal of S.
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Recall that a module isσ -compatible if all annihilators of elements ofM areσ -invariant
σ -ideals. This was shown to be a sufficient condition to conclude that the associated
of M[x;σ ] are precisely the extensions the associated primes ofM [1]. However, we
observe that anyσ -invariant associated prime is automatically aσ -associated ideal. Con
sequently, the associated primes ofM[x;σ ] coincide with the extensions of the associa
primes ofM precisely when every associated prime ofM is σ -invariant and every othe
annihilator idealI is either notσ -invariant, or satisfies the condition that for every s
moduleN with ann(N) = I , there exists 0�= K < N such that(ann(K))σ �= I . In light of
this, the analogue of the main result of [1], is clear:

Corollary 1.4. Suppose σ is surjective and M is a right R-module.

(1) If p ∈ Ass(M), then p[x;σ ] ∈ Ass(M[x;σ ]S) if and only if p is σ -invariant.
(2) If M is σ -compatible, or more generally, if every annihilator of a submodule of M is

σ -invariant, then Ass(M[x;σ ]S) = {p[x;σ ] | p ∈ Ass(M)}.

WhenR is Noetherian,σ is an automorphism, and we get a much stronger result:

Corollary 1.5. If R is a Noetherian ring, then Ass(M[x;σ ]S) = {pσ [x;σ ] | p ∈ Ass(M)}.

Remark 1.6. Results parallel to Theorem 1.2 and its corollaries for the skew-Laurent
nomial extensions are made by altering Definition 1.1. In order to defineR[x, x−1;σ ],
σ must be an automorphism. Whenσ is an automorphism andI ⊆ R define Iσ ∗ =⋂

j∈Z
σ j (I ). We call a nonzero submoduleN � M Laurent σ -prime if (ann(N ′))σ ∗ is con-

stant over all nonzero submodules ofN and call an idealI a Laurent σ -associated ideal
of M if I = (ann(N))σ ∗ for some Laurentσ -prime submoduleN . Although this altered
definition only applies for the skew-Laurent extensions, the Laurent-polynomial vers
Theorem 1.2 is now easily deduced: Ass(M[x, x−1;σ ]R[x,x−1;σ ]) = {I [x, x−1;σ ] | I is a
Laurentσ -associated ideal ofM}. The corollaries of this are also straightforward. Obse
that for any left, right, or two-sided idealI , Iσ ∗ is σ -invariant. Thus for everyp ∈ Ass(M),
pσ ∗ is automatically a Laurentσ -associated ideal ofM . Therefore{pσ ∗ [x, x−1;σ ] | p ∈
Ass(M)} ⊆ Ass(M[x, x−1;σ ]R[x,x−1;σ ]). Moreover, the notion of aσ -prime ideal in the
Laurent extension case is well established. Aσ -prime ideal is aσ -invariant ideal,P , which
satisfies the condition that ifI, J areσ -invariant ideals withIJ ⊆ P , then eitherI ⊆ P

or J ⊆ P . Such ideals always extend to prime ideals ofR[x, x−1;σ ] [5]. In particular,
the analogue of Corollary 1.3 is that an ideal isσ -prime if and only if it is the Lauren
σ -associated ideal of some Laurentσ -prime module. The proofs for the results for t
Laurent extensions are similar to the proofs of the main result that appear in Section
are therefore omitted.

2. Examples

A module can easily fail to beσ -compatible, as defined in [1], but still have ea

associated prime ofM[x;σ ] be extended from one ofM . For example, ifR is any
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simple ring with automorphismσ , then 1.2 shows that for any nontrivial moduleM ,
{(0)} = Ass(M[x;σ ]S) = {pσ [x;σ ] | p ∈ Ass(M)}. However, ifR has a proper nonzer
right idealJ which is notσ -invariant, thenM = R/J is notσ -compatible.

It is more interesting, in light of Theorem 1.2, to investigate modules,M , for which
the associated primes ofM fail to extend. The first of these investigations involves
associated prime which is notσ -invariant. Throughout the next examples we letk denote
a field.

Example 2.1. Let R = k[s, t] and MR = R/(t). Let σ be thek-algebra automorphism
of R transposings and t . Clearly Ass(MR) = {(t)}. But (t) is not σ -invariant since
σ−1((t)) = (s). Now (t)σ = (t) ∩ (s) = (st). We observe that(st) ∈ σ -Ass(M) and so
by 1.2, Ass(M[x;σ ]) = {(st)[x;σ ]}. Note that(st) is not prime, and more, is not the a
nihilator of any submodule ofM .

For p[x;σ ] ∈ Ass(M[x;σ ]S), p need not be a prime ideal ofR. However, in the above
example,(t)σ = (st), so one question that arises is whether or notpσ is a σ -associated
ideal whenp is prime. The following example shows that it need not be, even whenR is
commutative. Note that by 1.5 we must begin with a non-Noetherian base ring.

Example 2.2. Let R = k[. . . , t−1, t0, t1, . . .], and MR = R/(. . . , t−1, t0). Consider the
k-algebra automorphism ofR given by σ(ti) = ti−1 for all i. Clearly M is prime with
annihilator(. . . , t−1, t0). Thus Ass(M) = {(. . . , t−1, t0)}. Observe that

(. . . , t−1, t0)σ = (. . . , t−1, t0) ∩ (. . . , t−1, t0, t1) ∩ (. . . , t−1, t0, t1, t2) ∩ · · ·
= (. . . , t−1, t0),

but (. . . , t−1, t0) is not σ -invariant, hence not aσ -associated ideal. Therefore by The
rem 1.2, Ass(M[x;σ ]S) = ∅. Thus an associated prime ofMR need not extend in an
meaningful way to an associated prime ofM[x;σ ]S .

The next example illustrates that a nonprime annihilatorI can be aσ -associated idea
which is notpσ for any associated primep.

Example 2.3. Let R = k[. . . , t−2, t−1, t0, t1, t2, . . .]/(t2
i ), and definet̄i = ti + (t2

i ). Set
MR = RR and letσ be thek-algebra automorphism ofR given byσ(t̄i) = t̄i−1 for all i.
We claim thatM is σ -prime, but note that it is not prime. Observe that ann(M) = 0 is
σ -invariant. Thus(ann(M))σ = 0. In order to showM isσ -prime it will be enough to show
for any g ∈ (t̄i )i∈Z, that (g)σ = 0. If g ∈ (t̄i )i∈Z, then there existj1, j2, . . . , jn ∈ Z such
that g ∈ (t̄j1, t̄j2, . . . , t̄jn). Now (g)σ ⊆ (t̄j1, t̄j2, . . . , t̄jn )σ = 0. ThereforeM is σ -prime.
Thus 0 is the onlyσ -prime ideal ofM . Therefore by Theorem 1.2, Ass(M[x;σ ]) = {0}.
In contrast, we observe that every nonzero cyclic submodulef R � M contains a nonzer
cyclic submodule whose annihilator strictly contains ann(f R). That is,M has no cyclic

prime submodules, hence no prime submodules. Therefore Ass(M) = ∅.
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3. Proofs of the main results

The proof of Theorem 1.2 relies on some elementary initial results. The first res
well known in commutative algebra. We generalize the result found in [2]; the proof
is quite different.

Proposition 3.1. If A = ⊕
i∈Z

Ai is Z-graded ring with identity, MA = ⊕
i∈Z

Mi is a
graded module, N � M is a prime submodule and q = ann(N ), then q is a homogeneous
ideal.

Proof. Let a = a0 + · · · + ak ∈ ann(N ), where eachai is a nonzero element ofAmi
for

some integersm0 < · · · < mk . It will be enough to show thata0 ∈ ann(N ). It will then
follow by induction onk thatNai = 0 for eachi, and so the homogeneous terms oa
belong to ann(N ).

Let m ∈ N be an element of least possible length. That is, every element is the u
sum of nonzero homogeneous elements, and form, it involves the least number of term
possible among elements ofN . Write m = m0 + · · · + ml , where eachmi is a nonzero
element ofMni

for some integersn0 < · · · < nl . Clearly, for any homogeneous compone
Ar , every nonzero element ofmAr has lengthl. However,a0 annihilates the first term o
every nonzero element ofmAr , hence every nonzero element ofmAra0 has length less
thanl. By the minimality ofl, it must be thatmAra0 = 0. ThusmAa0 = 0. AsN is prime,
a0 ∈ ann(mA) = ann(N ). �
Corollary 3.2. If q ∈ Ass(M[x;σ ]S), then q = I [x;σ ] for some σ -invariant ideal I � R.

Proof. We gradeS = R[x;σ ] andM[x;σ ]S by degree inx. The preceding propositio
showsq is homogeneous with respect to this grading. SinceM[x;σ ] is x-torsionfree, it
follows thatq = I [x;σ ] for some idealI . To showI is σ -invariant, letN � M[x;σ ] be
prime with annihilatorI [x;σ ]. On one hand, 0�= Nx � N , so 0= NxI = Nσ(I)x.
Thus σ(I) ⊆ I , which saysI ⊆ σ−1(I ). On the other, 0= N Ix ⊇ Nσ(σ−1(I ))x =
Nx(σ−1(I )). SinceN is prime, ann(Nx) = I [x;σ ]. Consequently,σ−1(I ) ⊆ I . There-
foreσ−1(I ) = I . �
Corollary 3.3. If σ is surjective and N � M[x;σ ]S is prime, then annS(N) = I [x;σ ]
where I is the σ -associated ideal of a σ -prime submodule of M .

Proof. By the previous corollary, annS(N) = I [x;σ ] where I � R is σ -invariant. Let
0 �= f ∈ N be of minimal lengthl, and writef = m0x

a0 + · · · + mlx
al , where eachmi is

a nonzero element ofN anda0 < · · · < al . We showm0R is σ -prime with σ -associated
idealI .

Seta = a0 and letm ∈ m0R. Sinceσ is onto, we may selectr ∈ R so thatm0σ
a(r) = m.

Let J = annR(mR). Sincef S ⊆ N andI ⊆ ann(N), f SI = 0, and somRσa(I) = 0. As
I is σ -invariant andσ is onto,mRI = 0. ThusI ⊆ J .

Observe that, for alli � 0, every nonzero element off rRxi has lengthl. Every ele-

ment off rRxi(Jσ ) has length less thanl, sof rRxiJσ = 0, by the minimality ofl. Since
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N is primeJσ S ⊆ annS(f rS) = I [x;σ ]. ThereforeJσ = I and we concludem0R is σ -
prime. �
Lemma 3.4. For an R-module N , annS(N [x;σ ]) = (annR(N))σ [x;σ ].

Proof. Since N [x;σ ] is homogeneous, annS(N [x;σ ]) is homogeneous. Letrxi ∈
annS(N [x;σ ]). Then Nxj r = 0 for all j � 0, or, equivalently,r ∈ σ−j (annR(N)) for
all j � 0. That is,rxi ∈ annS(N [x;σ ]) if and only if r ∈ (annR(N))σ . �
Lemma 3.5. Let σ be surjective. Then NR is σ -prime with σ -associated ideal I if and only
if N [x;σ ] is prime with associated prime I [x;σ ].

Proof. SupposeN [x;σ ] is prime with associated primeI [x;σ ]. By Lemma 3.4,I =
(ann(N))σ . Let m ∈ N and setJ = annR(mR). Since N [x;σ ] is prime, I [x;σ ] =
annS((mR)[x;σ ]) = Jσ [x;σ ]. Thus Jσ = I and soN is σ -prime with σ -associated
idealI .

Conversely, ifN is σ -prime with σ -associated idealI , then 3.4 showsI [x;σ ] =
annS(N [x;σ ]). If N [x;σ ] is not prime, then there exists a nonzero elementf ∈ N [x;σ ]
such thatJ = annS(f S) strictly containsI [x;σ ]. Write f = m0x

a0 + · · · + mkx
ak ,

wheremi �= 0 anda0 < · · · < ak and letJ0 be the set of constant coefficients from
ements ofJ . Select a nonzero elements ∈ J \ I [x;σ ] of minimal length. Observe tha
if s = r0x

b0 + r1x
b1 + · · · + rmxbm ∈ J , thenr0 + r1x

b1−b0 + · · · + rmxbm−b0 ∈ J , asx

acts without torsion. Thusr0 ∈ J0. Sinces is of minimal length,r0 /∈ I and soJ0 strictly
containsI .

However, every element ofJ0 annihilates the term of lowest degree of every elem
of f S. In particularm0x

a0RxjJ0 = 0 for all j � 0. ThusJ0 ⊆ ⋂
j�a σ−j (ann(m0R)) =

σ−a0((ann(m0R))σ ) = σ−a0(I ). SinceI is σ -invariant, this impliesJ0 ⊆ I , a contradic-
tion. Therefore no suchf exists, andN [x;σ ] is prime with associated primeI [x;σ ]. �

We now have all of the preliminary results needed for the proof of the main result
proof hinges on the fact that we already know what form the associated primes mus

Proof of Theorem 1.2. If p ∈ Ass(M[x;σ ]), thenp = ann(N) for some prime submod
ule N � M[x;σ ]. By Corollary 3.3,p = I [x;σ ], whereI is theσ -associated ideal of
σ -prime submodule ofM .

Conversely, ifI is a σ -associated ideal ofM , thenI = (ann(L))σ for someσ -prime
submoduleL � M . By Lemma 3.5,I [x;σ ] ∈ Ass(M[x;σ ]) as it is the annihilator of the
prime submoduleL[x;σ ] � M[x;σ ]. �
Proof of Corollary 1.3. If I is the σ -associated ideal to aσ -prime module,NR , then
3.5 showsI [x;σ ] is prime. Conversely, supposeI [x;σ ] � S is prime. Thenσ(I) ⊆ I

sincexI [x;σ ] ⊆ I [x;σ ]. So I ⊆ σ−1(I ). As σ is surjective,(xS)(σ−1(I )S) = SIxS ⊆
I [x;σ ]. SinceI [x;σ ] is prime, σ−1(I )S ⊆ I [x;σ ]. Thus σ−1(I ) ⊆ I . ThereforeI is
σ -invariant. According to 3.5, it will be enough, to showN = (R/I)[x;σ ] is prime with

associated primeI [x;σ ]. Note that sinceI is σ -invariant, N ∼= S/(I [x;σ ]). Clearly,
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I [x;σ ] = annS(N). Let f ∈ R[x;σ ] \ I [x;σ ] and setJ = annS((f + I [x;σ ])S). Then
(f + I [x;σ ])SJ ⊆ f SJ + I [x;σ ]J ⊆ I [x;σ ]. Sof SJ ⊆ I [x;σ ]. SinceI [x;σ ] is prime,
J ⊆ I [x;σ ]. ThusJ = I [x;σ ] as required. �
Proof of Corollary 1.4. To verify (1), supposep ∈ Ass(M) and letN � M be a prime
submodule with ann(N) = p. N is automaticallyσ -prime with pσ as itsσ -associated
ideal, wheneverpσ is σ -invariant. Consequently, ifp is σ -invariant, Lemma 3.5 show
p[x;σ ] ∈ Ass(M[x;σ ]). Conversely, ifp[x;σ ] ∈ Ass(M[x;σ ]), then 3.2 shows thatp is a
σ -associated ideal and is thereforeσ -invariant.

For (2), we observe that the hypotheses along with (1) imply{p[x;σ ] | p ∈ Ass(M)} ⊆
Ass(M[x;σ ]). SupposeI is an ideal,I /∈ Ass(M), but is the annihilator of a nonzer
submoduleN � M . SinceI /∈ Ass(M), we may assume no such submodule is prime,
so contains a nonzero submoduleL whose annihilatorJ strictly containsI . SinceIσ = I

andJσ = J by hypothesis,I cannot be aσ -associated ideal. This proves{p[x;σ ] | p ∈
Ass(M)} = Ass(M[x;σ ]). �
Proof of Corollary 1.5. SupposeR is Noetherian and letq ∈ Ass(M[x;σ ]S). Then
q = I [x;σ ] for someσ -prime ideal ofM . In particular, there exists aσ -prime submodule
N � M with I = (ann(N))σ . SinceR is Noetherian, there exists an idealp which is max-
imal among annihilators of nonzero submodules ofN . We knowp is an associated prim
of N , and hence ofM . Moreover, sinceN is σ -prime,pσ = I .

Conversely, supposep ∈ Ass(M) and letL � M be a prime submodule with annihila
tor p. SetI = pσ , and note thatσ(I) ⊆ I . Sinceσ is an automorphism andR is Noetherian,
this implies thatI is σ -invariant. ThereforeL is σ -prime withσ -associated idealI . By 3.4,
L[x;σ ] is a prime submodule ofM[x;σ ] with associated prime ideal,I [x;σ ]. �
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