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Randomness is a valuable resource in science, cryptography, engineering, and information

technology. Quantum-mechanical sources of randomness are attractive because of the

indeterminism of individual quantum processes. Here, we consider the production of random bits

from polarization measurements on photons. We first present a pedagogical discussion of how the

quantum randomness inherent in such measurements is connected to quantum coherence, and how

it can be quantified in terms of the quantum state and an associated entropy value known as min-

entropy. We then explore these concepts by performing a series of single-photon experiments that

are suitable for the undergraduate laboratory. We prepare photons in different nonentangled and

entangled states, and measure these states tomographically. We use the information about the

quantum state to determine, in terms of the min-entropy, the minimum amount of randomness

produced from a given photon state by different bit-generating measurements. This is helpful in

assessing the presence of quantum randomness and in ensuring the quality and security of the

random-bit source. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000383

I. INTRODUCTION

Randomness plays an important role in science, engineer-
ing, technology, computing, and mathematics. For example,
simulations of complex systems and phenomena often employ
algorithms that rely on random numbers to account for effects
that cannot, for reasons of computational cost or accuracy, be
explicitly modeled.1 In cryptography, secure communications
necessitate the generation and distribution of random, secret
keys for encrypting messages.2 In fundamental quantum
experiments, such as Bell tests3 and delayed-choice experi-
ments,4 measurement settings must be chosen randomly to
avoid loopholes. Computer networks, too, make use of ran-
domness; for example, the Ethernet protocol assigns random
wait times to minimize conflicts between nodes. Randomness
is also an important resource in everyday applications such as
gambling, lotteries, and computer games.

One common way of generating random numbers is to
feed a starting value (the “seed”) into a deterministic algo-
rithm to produce a sequence of bits, typically with a uniform
distribution. Such algorithmic methods are known as pseudo-
random number generators (PRNGs; see Ref. 5 for a review).
In contrast with PRNGs, physical random number generators
use a (fundamentally or practically) unpredictable physical
process as a source of entropy for producing the bits. A par-
ticularly attractive source is provided by the indeterminism
of individual quantum events, giving rise to quantum random
number generators (QRNGs; see Ref. 6 for a review). The
ease with which individual photons can now be produced,
manipulated, and measured (even in undergraduate laborato-
ries3,7–11) has put the focus on QRNGs that make use of the
quantum properties of photons. In this paper, we will con-
sider an implementation based on polarization measure-
ments, shown in its basic form in Fig. 1.

Randomness is commonly identified with a notion of
unpredictability.6 A lack of predictability might be due to
insufficient information, or due to a fundamental indetermin-
ism in nature (as described by quantum mechanics), or both.
A crucial task associated with the realization of any bit-
generating process is to quantify the amount of randomness

produced by the source. Quantum mechanics offers unique
opportunities in this regard, because its statistical character
means that the relative frequencies of outcomes can be cal-
culated if the quantum state is known, and because, as we
will explain below, the amount of indeterminism in a mea-
surement outcome can likewise be quantified.

In this paper, we explore how the measurement of quan-
tum states can help us determine the amount of randomness
in a process that produces bits from polarization measure-
ments of photons. The purpose of our paper is twofold. First,
it aims to provide an accessible, pedagogical discussion of
the connections between quantum randomness, quantum
coherence, and a widely used randomness measure known as
the min-entropy.14 Second, it experimentally illustrates these
concepts and connections with the help of a single-photon
apparatus that can be set up and operated by undergraduates.
Our experiment uses a setup and components commonly
found in other undergraduate teaching laboratories on single
photons (see Refs. 3 and 7–11 for examples), and thus it can
be easily reproduced in such laboratories.

This paper is organized as follows. In Sec. II, we discuss
different facets of randomness and their quantification, and
describe how knowledge of the quantum state can be used to
measure randomness. Here, we make use of a result derived
by Fiorentino et al.12,13 that links the quantum state to the
min-entropy.14 In Sec. III, we experimentally illustrate these
issues using a single-photon apparatus. We prepare photons
in nonentangled and entangled polarization states and mea-
sure their states through a tomographic analysis. Using the
quantum-state data together with the link between quantum
states and min-entropy, we put a lower bound on the amount
of randomness that could be extracted from bit-generating
measurements of the kind shown in Fig. 1.

II. THEORY

A. Randomness as unpredictability

We define the randomness of a source of bits in terms of
the unpredictability of its output—i.e., how unexpected
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(surprising) a particular sequence of bits, and a particular bit
in the sequence, are, relative to any information an observer
may have about the bit-generation process and its output.6 If,
given such information, we cannot, on average, predict the
next bit better than with a blind guess, then we conclude that
we are dealing with a uniform random process (relative to
the information we hold). We can refine this definition by
introducing a measure of randomness (so that a source can
be “less” or “more” random than another), defined in terms
of the degree of predictability. If, on average, we can predict
the outcome with better than a blind guess, then we have a
certain amount of predictability, and hence only a certain
amount of randomness. If we can predict the outcome with
certainty, then we have perfect predictability and no random-
ness. (We will make this quantification precise in Sec. II B
below.)

For example, if we only have the bit strings produced by
the source as our guide, we can look for patterns in the
string. A pattern might be as simple as a bias toward 0 or 1
(nonuniformity). The bias reduces the degree of unpredict-
ability, because we could use its observation to predict the
next bit with, on average, better than a 50–50 chance. Other
patterns, such as subtle periodicities, might only manifest
themselves in very long sequences and be hard to distin-
guish. In general, we would need to search an infinite string
for all possible patterns to rigorously rule out predictability,
an impossible task.15 (A formal definition of the presence of
patterns is the Kolmogorov complexity16 of a sequence, but
in its exact form it is uncomputable.15) We might also try to
obtain information about the bit-generating process, for
example, by learning about the particular way a coin is
flipped. In this paper, we will use information about the
quantum state to measure unpredictability.

B. Min-entropy

The notion of predictability can be quantified using mea-
sures of entropy. A widely used measure is the min-
entropy.14 It provides a worst-case bound on many other
entropic measures and quantifies the effectiveness of any
strategy that tries to guess, at first attempt, the most likely
output of the source. An important meaning of min-entropy
is that it gives the minimum number of uniform random bits
that can be extracted from a given sequence,17 using a post-
processing technique known as randomness extraction.18

For a binary process described by a random variable X,
the min-entropy H1ðXÞ (per bit) is defined as

H1ðXÞ ¼ �log2 max p0; p1ð Þ; (1)

where p0 and pi are the probabilities of the bits 0 and 1
(which may be interpreted as guessing probabilities for the
next bit of the output). For a uniform probability distribution
(p0 ¼ p1 ¼ 1=2), the min-entropy assumes its maximum,
H1 ¼ �log2ð1=2Þ ¼ 1. In this case, there is no better
strategy than a blind guess, and we obtain a full random bit.
If the result is predictable with certainty (p0 ¼ 1 or p1 ¼ 1),
then H1 ¼ �log21 ¼ 0, representing a completely nonran-
dom process. If, more generally, X takes values from the
alphabet of all 2N possible N-bit sequences, and if each
sequence is equally likely, the min-entropy of N bits gener-
ated by the source attains its maximum value of H1ðXÞ
¼ �log22�N ¼ N. An important practical problem is the
estimation of the source’s min-entropy.6 We will come back
to this task below.

C. Quantum randomness

If we knew the seed and the algorithm of a PRNG, we
could predict the output with certainty. This is analogous to
the deterministic nature of classical physics: If we
completely knew the laws and initial conditions, we could
perfectly predict the outcome of, say, a coin toss. In such
cases, the appearance of unpredictability is simply the result
of a lack of information. Quantum mechanics, however, is
fundamentally different, because it is not a deterministic the-
ory. Knowing the quantum state, one can predict the relative
frequencies of measurement outcomes, but in general one
cannot, even in principle, know which particular outcome
will occur in a given measurement. Crucially, this unpredict-
ability is not something that could be overcome by gathering
more information; rather, it is a property of nature rooted in
the indeterministic character of the quantum measurement
process. We shall refer to this property as quantum
randomness.19

Note that the notion of quantum randomness is distinct
from the definition of randomness in terms of the degree of
statistical unpredictability (especially concerning bias) intro-
duced in Secs. II A and II B. In quantum mechanics, both
notions are relevant. To see this, consider the pure quantum
state cos hjHi þ ei/ sin hjVi. The property of quantum ran-
domness means that which particular outcome (H or V) will
occur in a polarization measurement in the horizontal–verti-
cal (HV) basis is not predetermined by anything in nature.
(From here on, we shall always consider the production of
bits from such HV measurements and therefore take the HV
basis as default.) Yet, if we know jwi, then we can place a
bet on whichever outcome is associated with the larger quan-
tum probability (pH ¼ cos2h or pV ¼ sin2h) since the result-
ing bit string will typically, in the long run, be biased toward
the more likely outcome. It follows that in order to obtain a
string that is both quantum-random and uniformly random,
we need to consider HV measurements on photons all pre-
pared in the quantum state jwi ¼ 1=

ffiffiffi
2
p
ðjHi þ ei/jViÞ, such

that pH ¼ pV.

D. Randomness for mixed states

In general, a quantum system is described not by a pure
state but by a mixed state, represented by a density operator
q̂ (see Ref. 11 for an introduction to mixed states and density
operators). A general mixed state can be written as q̂

Fig. 1. (Color online) Basic principle of a branching-path quantum random

number generator. A stream of photons, each prepared in the polarization

state jwi ¼ 1=
ffiffiffi
2
p
ðjHi þ ei/jViÞ, is incident on a polarizing beam splitter

(PBS), with detectors D0 and D1 placed at the outputs. This configuration

realizes a polarization measurement in the horizontal–vertical (HV) basis.

By identifying detection at D0 with the bit 0 and detection at D1 with 1, a

random sequence of bits can be produced.
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¼
P

ipijwiihwij with 0 < pi � 1 and
P

ipi ¼ 1. Such a situa-
tion arises, for example, if there are fluctuations in the state
preparation device, such that each preparation results in one
of the pure states jwii with probability pi, but we do not
know in which. In this case, the probabilities pi are classical
in the sense that they reflect our ignorance (rather than a fun-
damental indetermism); we say that the mixed state repre-
sents a classical ensemble of pure states. Mixed states also
arise as the “reduced” states of a subsystem that is part of a
larger system.20 For example, for two photons prepared in
the entangled Bell state jUþi ¼ 1=

ffiffiffi
2
p
ðjHijHi þ jVijViÞ, the

reduced state q̂r of one photon, obtained by a partial trace9,20

over the density operator q̂ ¼ jUþihUþj, is the mixed state
q̂r ¼ 1=2jHihHj þ 1=2jVihVj. The reduced state encapsu-
lates the statistics of all possible measurements one can per-
form on this photon.

What distinguishes a pure state jwi ¼ ajHi þ bei/jVi
(with a and b real, and a2 þ b2 ¼ 1) from the mixed state q̂
¼ a2jHihHj þ b2jVihVj is the presence of quantum coher-
ence between the state components jHi and jVi in the pure
state. Coherence between jHi and jVi represents the in-
principle indistinguishability of jHi and jVi prior to the mea-
surement, and thus implies the presence of quantum random-
ness in an HV measurement. In the HV basis, the matrix
representation of the density operator q̂ ¼ jwihwj associated
with the pure state jwi is

q¼
hHjq̂jHi hHjq̂jVi
hVjq̂jHi hVjq̂jVi

 !
¼

a2 abe�i/

ab ei/ b2

0
@

1
A: (2)

The magnitude ab of the off-diagonal terms represents the
amount of coherence between jHi and jVi. It gets smaller as
the amplitudes a and b become more different. The off-
diagonal terms (and thus quantum randomness) are maxi-
mized when a2 ¼ b2 ¼ 1=2, in which case we also have a
uniform random process, since the probabilities of H and V
are equalized. By comparison, the density matrix for the
mixed state q̂ ¼ a2jHihHj þ b2jVihVj is

q ¼
a2 0

0 b2

 !
: (3)

This state gives the same probabilities for HV measurements
as the state (2), but now the off-diagonal elements are zero,
i.e., there is no coherence between jHi and jVi, and therefore
no guaranteed quantum randomness in an HV measure-
ment.21 In general, any quantum state q̂ can be written as20

(the HV basis is again implicit)

q ¼
A Cei/

Ce�i/ B

 !
; (4)

with A, B, and C real and nonnegative, Aþ B ¼ 1, and
C �

ffiffiffiffiffiffi
AB
p

, where the equality holds for a pure state [compare
Eq. (2)].

As mentioned, a state such as Eq. (3) might represent a
classical ensemble or the reduced state. Let us illustrate these
two cases using the example of generation of random keys in
cryptography. For the case in which the mixed state is a clas-
sical ensemble, we might imagine an adversary, Eve, who
prepares a stream of photons, each in either the state jHi or

the state jVi, and then feeds the photons to Alice. To Eve,
the collection of photons is in a pure state (since she knows
the polarization of each photon), but Alice would need to
assign the mixed state q̂r ¼ pHjHihHj þ pV jVihVj (since
each photon is in a pure state but she does not know in
which). To Alice, the bit string resulting from her HV
measurements will appear random, but there is no quantum
randomness involved in her measurements—Eve will be
able to perfectly predict each bit Alice produces. Alice’s key
would not be private.

For the case of a reduced state, consider the scenario in
which Alice performs HV measurements on one photon in
the entangled state jUþi ¼ 1=

ffiffiffi
2
p
ðjHijHi þ jVijViÞ. (We

explore this scenario experimentally in Sec. III E.) The quan-
tum correlations represented by jUþi imply that no
coherence between jHi and jVi can be observed locally by
measuring just one of the photons in the pair. This is so
because one could, in principle, fix the state (jHi or jVi) of
one photon in the pair by measuring the other photon.
Whether such a measurement is actually carried out is irrele-
vant for this loss of local coherence. If Eve possesses the
other photon in the entangled pair and does measure it in the
HV basis, then the outcomes of the HV measurements per-
formed by Alice and Eve on their respective photons will be
perfectly correlated, so Eve would be able to learn Alice’s
sequence. (If she measures before Alice, we have effectively
the scenario described in the previous paragraph.) Because
the statistics of any measurements Alice could undertake on
her photon cannot be influenced by Eve’s measurements on
the other photon, the density matrix of Alice’s photons must
reflect the mere possibility that Eve’s measurements could
have taken place. This implies a description by an incoherent
mixture of jHi and jVi; q̂r ¼ 1=2jHihHj þ 1=2jVihVj, which
is Alice’s reduced state. Again, there is no guaranteed quan-
tum randomness for Alice’s measurements.

In summary, the magnitude of the off-diagonal elements
of the density matrix expressed in the HV basis indicates the
amount of randomness we can generate through HV mea-
surements. If the off-diagonal elements are zero [as in Eq.
(3)], then there is no guarantee that the output is not predeter-
mined (in the sense that it could be predicted with certainty).
If the off-diagonal elements are nonzero, then there is at least
some degree of quantum randomness in the output, and thus
we can generate fresh randomness even if the state is fully
known. We can increase this randomness by increasing
coherence between jHi and jVi, and by making the probabil-
ities of the outcomes H and V more similar (which also
decreases bias).

E. Min-entropy bound from the quantum state

As discussed in Sec. II B, the min-entropy of a source
measures the degree of randomness (unpredictability) of its
output. Then, in Sec. II D, we saw how we can use knowl-
edge of the quantum state of the photon to quantify the
amount of randomness generated by an HV measurement.
We will now connect these concepts by describing how we
can use knowledge of the quantum state to estimate the min-
entropy.

For a pure state jwi ¼ ajHi þ bei/jVi, there is maximum
quantum randomness in the outcome of the HV measure-
ment, and we can simply identify the probabilities p0 and p1

in the general expression (1) for the min-entropy (now per
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HV measurement) with the quantum probabilities a2 and b2

specified by jwi,

H1ðjwihwjÞ ¼ �log2 max a2; b2
� �

: (5)

On the other hand, for the mixed state q̂ ¼ a2jHihHj
þb2jVihVj, we cannot guarantee that the measurement pro-
duces fresh randomness, and hence there is no guaranteed
unpredictability. Thus, the min-entropy might be zero and
we cannot do better than provide a lower bound of
H1ðq̂Þ � 0. For a general photon state (4), since the degree
of quantum randomness for HV measurements is given by
the size of the off-diagonal elements, one can use this size to
put a lower bound on the min-entropy of the source.
Fiorentino et al.12,13 showed that for photons in a known
state q̂, the min-entropy H1ðq̂Þ per HV measurement is no
less than

Hmin
1 ðq̂Þ ¼ �log2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C2
p

2

� �
; (6)

where C is the magnitude of the off-diagonal elements of q̂
expressed in the HV basis [see Eq. (4)]. A plot of Hmin

1 as a
function of C is shown in Fig. 2. (Note that we must also
have H1ðq̂Þ � 1, since one cannot generate more than one
random bit per measurement.)

Let us check Eq. (6) for some important cases. For the
mixed state q̂ ¼ a2jHihHj þ b2jVihVj, we have C¼ 0 [see
Eq. (3)] and therefore Hmin

1 ðq̂Þ ¼ �log21 ¼ 0, as desired.
For the pure state jwi ¼ 1=

ffiffiffi
2
p
ðjHi þ ei/jViÞ, we have C

¼ 1=2 and Hmin
1 ðq̂Þ ¼ 1, and thus we reach the maximum

H1ðq̂Þ ¼ 1. For a pure state jwi ¼ ajHi þ bei/jVi; C
¼ ab ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

and the parenthetical expression on the
right-hand side of Eq. (6) evaluates to 1=2þ jð1=2Þ � a2j. If
a2 < 1=2, then this expression is equal to 1� a2 ¼ b2, which
is also maxða2; b2Þ. Otherwise, it is equal to a2, which again
is maxða2; b2Þ. Thus, Eq. (6) is equal to �log2maxða2; b2Þ
and we recover Eq. (5). This shows that for a pure state, the
min-entropy is equal to Hmin

1 ðq̂Þ.
Equation (6) gives the min-entropy bound when the quan-

tum state is known. This is useful when we want to use quan-
tum state measurement to estimate the randomness produced
by polarization measurements (as we do in Sec. III). In par-
ticular, because Hmin

1 ðq̂Þ is nonzero if and only if there is
coherence between jHi and jVi, we can use it to ensure
quantum randomness in the outcomes of HV measurements.

Equation (6) is also useful in the adversarial scenarios of
Sec. II D, where Eve might have prepared the quantum states
that Alice is measuring, or when Alice’s photons are
quantum-correlated with Eve’s. Then the quantum random-
ness guaranteed by a nonzero min-entropy bound (6) ensures
that Alice’s measurements will produce fresh randomness
that will allow her to extract a certain minimum amount
(given by Hmin

1 ) of uniform, private random bits uncorrelated
with any of Eve’s information.12,13 That is, Eq. (6) gives the
maximum amount of information (per bit) that Eve can
obtain about Alice’s sequence. We experimentally study
such an adversarial scenario in Sec. III E.

III. EXPERIMENTS

We now turn to our experiment, in which we consider dif-
ferent scenarios for the production of bits from HV polariza-
tion measurements and then quantify the randomness of the
process in each scenario. To do so, for each scenario, we
measure the quantum state, and then apply Eq. (6) to deter-
mine a lower bound on the min-entropy of the bit-generating
process.

A. Experimental apparatus

Our experimental apparatus, shown in Fig. 3, is capable of
producing polarization-entangled photon pairs and is similar
to the undergraduate-compatible photonic setups that have
been described in this journal;3,7–10 see also Ref. 11 for
details. A 405-nm, 150-mW diode pump laser is incident on
a pair of closely stacked, 0.5-mm-thick beta-barium borate
crystals cut for type-I spontaneous parametric downconver-
sion.7,11,22 The optic axes of the two crystals are oriented at
right angles to each other, such that one of the crystals

Fig. 2. Lower bound Hmin
1 [see Eq. (6)] on the min-entropy per HV measure-

ment when the state q̂ is known, shown as a function of the size C of the off-

diagonal elements of the density matrix expressed in the HV basis.

Fig. 3. (Color online) Schematic of the experimental setup. Here, DC

denotes the down-conversion crystals, HWP denotes a half-wave plate,

QWP denotes a quarter-wave plate, and PBS denotes a polarizing beam

splitter. The outputs from the beam splitters are fed into fiber-coupled lenses

and detected by single-photon counting modules.
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produces pairs of horizontally polarized 810-nm photons
while the other produces vertically polarized pairs. Emitted
photons make an angle of about 3

�
with the pump beam. We

refer to the two photon beams as signal and idler. Using a
half-wave plate, the pump polarization can be rotated to
pump either just one downconversion crystal (to produce a
nonentangled state jHijHi) or both crystals to produce
an entangled state resembling jUþi ¼ 1=

ffiffiffi
2
p
ðjHijHi

þei/jVijViÞ. The phase / can be adjusted by rotating an X-
cut, 10� 10� 0:5 mm quartz plate placed upstream from
the downconversion crystal. To enhance entanglement, we
precompensate for the walk-off of the orthogonal polariza-
tion components inside the downconversion crystal by insert-
ing a 5� 5� 5:58 mm quartz crystal.

The signal and idler photons are subjected to polarization
analyzers, each consisting of a quarter-wave plate, a half-
wave plate, and a polarizing beam splitter. By turning the
wave plates to appropriate settings, polarization measure-
ments in three different bases can be realized for each pho-
ton: The HV basis, the diagonal basis defined by jDi
¼ 1=

ffiffiffi
2
p
ðjHi þ jViÞ and jAi ¼ 1=

ffiffiffi
2
p
ðjHi � jViÞ, and the

circular basis defined by jRi ¼ 1=
ffiffiffi
2
p
ðjHi þ ijViÞ and jLi

¼ 1=
ffiffiffi
2
p
ðjHi � ijViÞ. Photons are captured by converging

lenses coupled to multimode fiber-optic cables and transmitted
to single-photon counting modules based on silicon avalanche
photodiodes (the detection efficiency is about 30% at
810 nm). Ambient photons are removed by 780-nm long-pass
filters placed at the inputs of the counting modules. To ensure
detection of single photons, we measure signal and idler pho-
tons in coincidence within a time window of 7–8 ns.23

Coincidences are processed by a field-programmable gate
array implemented on an Altera DE2 board,23 which transmits
data to a PC running LabVIEW software.24

In our experiment, we do not actually read out a bit string
produced from the outcomes of individual polarization mea-
surements, because our equipment cannot time-stamp indi-
vidual photon events; instead, it accumulates photon counts
over a preset time interval. Nor does our equipment allow
for making the counting interval short enough such that pre-
dominantly no photons or just one photon are registered,
which could be used to define bits from individual out-
comes.25 To be sure, we could instead produce bits from,
e.g., the parity (even or odd) of photon counts in each count-
ing interval. We do not, however, pursue this approach here,
because it would not allow for the randomness of the result-
ing string to be directly related to the min-entropy estimation
for individual measurement events, and because the focus of
our paper is on the use of quantum state measurement for
assessing randomness.

B. Quantum state tomography

In photonic quantum state tomography, the density matrix
of an ensemble of photons is reconstructed from a series of
polarization measurements in different bases. We refer the
reader to Refs. 9, 11, and 26 for introductions to the subject,
and here just briefly review the main idea. The density opera-
tor for the photon can always be written as

q̂ ¼ 1

2

X3

i¼0

Sir̂i; (7)

where the r̂i are the Pauli matrices, and the Si ¼ hri � rji
are expectation values (in this context known as Stokes

parameters) that can be measured by performing projective
measurements on the photons in the HV basis, the diagonal
basis (DA), and the circular basis (RL).9,11,26 The half-wave
and quarter-wave plate settings are ð0�; 0�Þ for a measure-
ment in the HV basis, ð22:5�; 45�Þ for the DA basis, and
ð0; 45�Þ for the RL basis.11 From these three measurement
settings and the statistics of the coincidence counts measured
at each setting, the Stokes parameters can be estimated and
the density matrix can be reconstructed.

This method readily generalizes to the measurement of the
4� 4 density operator of a pair of photons. This density
operator can be written as

q̂ ¼ 1

4

X3

i;j¼0

Sij r̂i � r̂jð Þ: (8)

Here, the Sij ¼ hri � rji are the (two-photon) Stokes param-
eters, which we can estimate by performing polarization
measurements in the three bases on both photons.

C. Bit generation from measurements of photons in a

nonentangled state

First, we create photon pairs in the nonentangled state
jHijHi by pumping only one of the downconversion crystals.
We use a half-wave plate in the signal beam to prepare the
signal photon in a state close to the diagonal state jDi
¼ 1=

ffiffiffi
2
p
ðjHi þ jViÞ and remove all other wave plates in the

beam. On average, half of the photons will be registered
at the B output of the beam splitter and half at B0 (compare
Fig. 3). This realizes an HV measurement and thus represents
the standard branching-path method for bit generation shown
in Fig. 1.

To estimate the min-entropy of such a random process, we
perform quantum state tomography on the signal photon by
inserting a half-wave plate and quarter-wave plate into the
signal beam and carrying out measurements in the HV, diag-
onal, and circular bases as described in Sec. III B. The result-
ing density matrix q is

q ¼
0:493 0:449þ 0:144i

0:449� 0:144i 0:507

 !
; (9)

which is shown in Fig. 4.
First, we assess the similarity of this state to the diagonal

state q̂D ¼ jDihDj by calculating the fidelity27 Fðq; qDÞ
¼ ðTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
p

qD
ffiffiffi
q
pp
Þ2 for the two density matrices. We find

F¼ 0.974, which shows that the prepared state is indeed well
described by jDi. The diagonal elements (i.e., the probabili-
ties for H and V) are similar in size (q11 ¼ pH ¼ 0:493 and
q22 ¼ pV ¼ 0:507), giving near-uniformity of the bit
sequence in the long run. The size of the off-diagonal ele-
ments is C ¼ jq12j ¼ jq21j ¼ 0:472, which is close to the
maximum value of Cmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p ¼ 0:5 that would be
attained for a pure state jwi ¼ ffiffiffiffiffiffiffi

q11

p jHi þ ei/ ffiffiffiffiffiffiffi
q22

p jVi [com-
pare Eq. (4)]. This indicates a large amount of coherence
between jHi and jVi, and thus a large amount of quantum
randomness in the outcomes of HV measurements. We calcu-
late the min-entropy bound (6) from the size of the off-
diagonal elements and obtain Hmin

1 ¼ 0:589. Recall that the
min-entropy gives the number of uniform random bits (per
bit) that can be extracted from the raw bit string.17 Thus, the
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value of the bound signals that from N bits obtained from
HV measurements, one could extract a uniform random
string containing at least 0:589N bits.

D. Bit generation from measurements of photon pairs in

an entangled state

Next, we prepare photon pairs in an entangled state close to
the Bell state jUþi ¼ 1=

ffiffiffi
2
p
ðjHijHi þ jVijViÞ, by pumping

both downconversion crystals. We now consider the scenario
in which bits are produced by measuring each photon in the

HV basis and associating the two-photon coincidence events
HH and VV with the bits 0 and 1. (Such entangled-state mea-
surements have been used in several QRNGs.12,13,28) If the
state were indeed jUþi, then there is maximum quantum ran-
domness in the measurement outcomes HH and VV, and one
expects a uniform random sequence of bits.

To assess the prepared two-photon state and the ran-
domness it implies, we insert half- and quarter-wave
plates into the signal and idler beams and tomographically
reconstruct the two-photon density matrix from Eq. (8).
The result is

q ¼

0:409 �0:111þ 0:052i 0:009� 0:148i 0:360� 0:182i

�0:111� 0:052i 0:056 �0:003� 0:006i �0:052� 0:065i

0:009þ 0:148i �0:003þ 0:006i 0:030 �0:019þ 0:096i

0:360þ 0:182i �0:052þ 0:065i �0:019� 0:096i 0:505

0
BBBB@

1
CCCCA; (10)

which is shown in Fig. 5. We first quantify the closeness of

the reconstructed state to the Bell state q̂þ ¼ jUþihUþj by
calculating the fidelity. We find Fðq; qþÞ ¼ 0:904, indicating

that the prepared state is well described by jUþi. As an addi-
tional check, we confirm the presence of polarization entan-
glement by performing a CHSH–Bell test.3 We find
S ¼ 2:457 6 0:002 (the error is estimated from statistical
fluctuations of the photon counts), showing a clear violation
of the bound S � 2 for local-realistic theories.

While we have reconstructed the 4� 4 density matrix of
the photon pair, the min-entropy bound (6) is calculated
from a 2� 2 density matrix. Therefore, to apply Eq. (6) we
must restrict the measured density matrix to the subspace rel-
evant to the generation of bits from the HH and VV coinci-
dences, which is the space spanned by jHijHi and jVijVi.
The portion of the density matrix associated with this sub-

space is qsub ¼
~q11 ~q14

~q41 ~q44

� �
, where the ~qij are matrix

Fig. 4. Real (left) and imaginary (right) parts of the density matrix for the signal photon prepared in a superposition of horizontal and vertical polarizations.

Black bars represent positive values, white bars negative values.

Fig. 5. Real (left) and imaginary (right) parts of the density matrix reconstructed from quantum state tomography of the two-photon state. Black bars represent

positive values, white bars negative values.
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elements of the two-photon density matrix that have been
renormalized such that the diagonal elements add up to one.
We stress that the density matrix qsub is not to be confused
with the reduced density matrix for a single photon obtained
from a partial trace over the two-photon density operator.
Rather, it is a two-photon density matrix (it describes the sta-
tistics of two-photon coincidence events) that has been lim-
ited to a two-dimensional state space defined by the
coincidences of interest.

Using the data given in Eq. (10), this subspace matrix qsub

is

qsub ¼
0:447 0:394� 0:199i

0:394þ 0:199i 0:553

 !
; (11)

shown in Fig. 6. The probabilities for HH and VV are pHH

¼ ~q11 ¼ 0:447 and pVV ¼ ~q22 ¼ 0:553, which tells us that
the bit generation would be biased toward the bit 1. Such a
bias would have to be removed by postprocessing. It could
also, of course, be reduced by tuning the state, but here we
purposely keep such imperfections to illustrate the issue of
bias. The magnitude of the off-diagonal elements represent-
ing quantum coherence between jHijHi and jVijVi is
C ¼ j~q14j ¼ j~q41j ¼ 0:441, which is in the vicinity of the
maximum value Cmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~q11~q44

p
¼ 0:5 and indicates a sub-

stantial amount of quantum randomness in the outcomes HH
and VV. Using this value C¼ 0.441 in Eq. (6) gives a mini-
mum min-entropy of Hmin

1 ¼ 0:443 per measured coinci-
dence event HH or VV.

E. Bit generation from measurements on a photon in an
entangled state

We again prepare the entangled state jUþi as in Sec. III D,
but this time we consider the case where we produce the bits
not from two-photon coincidence events but from HV mea-
surements on the signal photon only, as in Sec. III C. (Note
that this is the scenario discussed in Sec. II D, where Alice
measures photons entangled with Eve’s photons.) The den-
sity matrix of this single-photon state (the reduced state) is
obtained from the two-photon density matrix by averaging
over the outputs A and A0 of the idler (i.e., the signal events
are not conditioned on the polarization of the idler, since we
assume that Alice has access only to measurements on the
signal photon). Formally, this averaging is represented by a
partial trace over the two-photon density matrix. The result-
ing density matrix is

q ¼
0:439 �0:130þ 0:148i

�0:130� 0:148i 0:561

 !
; (12)

which is shown in Fig. 7. The off-diagonal elements are now
small: Their magnitude is only 0.197, far below the value
Cmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p ¼ 0:5 one would have for a pure state with
full coherence between jHi and jVi. Accordingly, the corre-
sponding min-entropy bound (6) is only Hmin

1 ¼ 0:060, indi-
cating a low amount of randomness. As discussed in Sec.
II D, the explanation for this loss of randomness lies in the
quantum correlations between signal and idler photons,
which preclude the possibility of observing coherence
between jHi and jVi on the signal photon. The fact that the

Fig. 6. Real (left) and imaginary (right) parts of the two-photon density matrix for the subspace spanned by the coincidence events HH and VV. Black bars rep-

resent positive values, white bars negative values.

Fig. 7. Real (left) and imaginary (right) parts of the density matrix for the signal photon when the photon pair is prepared in an entangled state. Black bars rep-

resent positive values, white bars negative values.
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entangled second photon could be used to obtain information
about Alice’s photon forces the disappearance of coherence
(and thus of guaranteed quantum randomness) on Alice’s
side.

Regardless of what (if any) measurements are performed
on the idler, Alice will always get a sequence of Hs and Vs
that will appear random to her. Thus, she would not be able
to detect Eve’s presence based on the results of her bit-
generating procedure. Fortunately, however, she can find out
about the lack of guaranteed randomness from her tomo-
graphic reconstruction of the state of the signal photon. She
will not know why there is a lack of randomness (she does
not have knowledge of the two-photon entangled state), but
the state measurement and the min-entropy value obtained
from it will alert her that her bit source is not producing suf-
ficient randomness.

IV. CONCLUSIONS

We have considered different scenarios for the production
of random bits from polarization measurements of photons,
and explored, both theoretically and experimentally, how
knowledge of the quantum state of the photons can help
quantify the presence of randomness (defined as unpredict-
ability). Specifically, we discussed how the amount of quan-
tum coherence in the state between the two possible
outcomes of the polarization measurement indicates the
amount of fresh randomness that can be produced by the
measurement. Here, we also made use of a quantitative con-
nection (proved in Refs. 12 and 13) between such coherence
and a lower bound on the min-entropy of the source, which
gives the most conservative estimate of the randomness of
the bit-generating process. Throughout, we have emphasized
a distinction between randomness resulting from a lack of
information, and quantum randomness rooted in the indeter-
ministic nature of individual quantum measurements. The
min-entropy estimated from the quantum state can jointly
quantify both sources of randomness.

In our experiment, we tomographically measured the
quantum state of photons prepared in nonentangled and
entangled polarization states, and used this state information
to calculate a lower bound on the min-entropy for different
choices of the bit-generating polarization measurement. We
found a large min-entropy, and hence a high amount of ran-
domness, when the bits were produced from measurements
on a photon prepared in a nonentangled superposition state,
and when they were produced from joint measurements on
pairs of photons prepared in an entangled state. This can be
understood from the presence of a large amount of quantum
randomness, coupled with near-equalized quantum probabili-
ties for the measurement outcomes.

In contrast, we found a low min-entropy bound when the
bits were obtained from measurements on only one of the
photons in an entangled pair. This loss of randomness is
rooted in the quantum correlations inherent in the entangled
state, leading to a decrease in quantum randomness that can
be guaranteed for measurements on one photon. It can also
be understood in the context of the presence of an adversary
who uses measurements on the other photon in the
entangled pair to learn the bit sequence, thereby compro-
mising the privacy of the sequence. Such lack of guaranteed
randomness and privacy does not manifest itself in the bit
sequence, but it can be detected by a measurement of the
quantum state.
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