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We study the protective measurement of a qubit by a second qubit acting as a probe. Consideration of
this model is motivated by the possibility of its experimental implementation in multiqubit systems such as
trapped ions. In our scheme, information about the expectation value of an arbitrary observable of the system
qubit is encoded in the rotation of the state of the probe qubit. We describe the structure of the Hamiltonian
that gives rise to this measurement and analyze the resulting dynamics under a variety of realistic conditions,
such as noninfinitesimal measurement strengths, repeated measurements, non-negligible intrinsic dynamics of
the probe, and interactions of the system and probe qubits with an environment. We propose an experimental
realization of our model in an ion trap. The experiment may be performed with existing technology and makes
use of established experimental methods for the engineering and control of Hamiltonians for quantum gates and
quantum simulations of spin systems.
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I. INTRODUCTION

Weak quantum measurements have attracted widespread
theoretical and experimental interest [1,2]. In contrast with
standard impulsive measurements, they allow one to obtain
information about a quantum system without appreciably
affecting its state during the measurement. An important
instance of such weak measurements is protective measure-
ment [2–8]. Here, the state of the system is prevented from
changing during the measurement by preparing the system in
an eigenstate of a self-Hamiltonian that is much stronger than
the weak-interaction Hamiltonian describing the coupling of
the system to the measurement probe. The interaction between
system and probe is for a duration T much larger than the
timescale set by the intrinsic evolution of the system. If
these conditions are fulfilled, one can show that the pointer
of the probe is shifted such as to indicate the expectation
value of an arbitrary observable of the system (the particular
observable is determined by the structure of the interaction
Hamiltonian). Thus, the expectation value, a quantity usually
obtained statistically from measurements on an ensemble of
systems, can be obtained in a single-shot measurement on an
individual system without appreciably disturbing the state of
the system [2–8]. This suggests the possibility of quantum-
state measurement of single systems [3–6,9–13], as well as
a number of other applications in quantum measurement
[2–5,9,14] and the study of particle trajectories [15,16].

Despite the recognition of the importance of protec-
tive measurements, their experimental realization using the
scheme just described has remained an open challenge. The
paradigmatic example frequently considered in models of
protective measurements is that of a setup of the Stern-
Gerlach type, in which a spin- 1

2 particle is deflected by an
inhomogeneous magnetic field while an additional, much
stronger uniform field provides the protection of the spin state
[4,5,17]. For parameters typical to Stern-Gerlach experiments,

however, achieving both sufficient state protection and ap-
preciable beam displacements requires a very strong uniform
field of several Tesla [17] (unless very slow, cold atoms are
used [18]), and the fields need to be extended over a sizable
region of space (on the order of 0.1–1 m ), posing an exper-
imentally highly challenging scenario. If one were instead to
use photons to implement the protective measurement, the dif-
ficulty lies in applying both the protection and measurement
Hamiltonians simultaneously, as individual optical elements
such as birefringent plates can only realize one of these
Hamiltonians. (There exists a different version of a protective
measurement based on the quantum Zeno effect [4] that has
been realized using photons [19]. However, because the state
protection is realized through repeated projections onto the
initial state, it requires a priori knowledge of this state and
thus precludes measurement of an unknown quantum state for
a single system [20]. In the following, we will take the term
“protective measurement” to refer to the non-Zeno scheme
described in the preceding paragraph.)

The current impasse in the experimental realization of a
protective measurement suggests the search for alternative im-
plementations. Here we propose and analyze protective qubit
measurements in which the probe is realized by a two-level
system implemented by a second qubit (to be referred to as a
“qubit probe” from here on). This is in contrast with existing
treatments of protective measurements [2–8,17,21], where the
pointer shift is encoded in a translation in position or momen-
tum of a particle moving in phase space (henceforth referred
to as a “phase-space probe”). One benefit of a qubit probe
is that one can make use of the many experimentally well-
established techniques for engineered interactions between
qubits. Specifically, experiments with trapped ions [22], both
those aimed at quantum computation [22] and those designed
to simulate many-spin systems [23–30], are able to realize a
wide variety of single- and multiqubit Hamiltonians, which
can be directly applied to the implementation of a protective
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measurement. Moreover, such experiments also provide fast,
high-fidelity state preparation and readout [22,31,32]. Thus
our model offers the possibility of an experimental imple-
mentation of a tunable protective measurement with existing
technology.

This paper is organized as follows. In Sec. II, we de-
scribe the model and its Hamiltonian, solve for the resulting
dynamics, and discuss the readout of the qubit probe. In
Sec. III, we study our model under realistic conditions, such
as noninfinitesimal measurement strengths, repeated measure-
ments, intrinsic probe dynamics, and interactions with an
environment during the measurement. In Sec. IV, we propose
an experimental implementation of the model with trapped
ions. We discuss our findings in Sec. V.

II. MODEL AND DYNAMICS

A. Hamiltonian and time evolution

The Hamiltonian describing the protective measurement of
a system S by a probe P takes the general form [2–6]

Ĥ (t ) = ĤS + ĤP + Ĥm(t ) = ĤS + ĤP + κ (t )ÔS ⊗ ÔP, (1)

where ĤS and ĤP are the self-Hamiltonians of S and P, and
Ĥm(t ) represents the measurement interaction. ÔS is an arbi-
trary observable of S that is to be measured, ÔP is an operator
that generates the shift of the probe pointer, and κ (t ) repre-
sents the time dependence of the measurement interaction.
Commonly, one takes κ (t ) ∝ 1/T during the measurement
interval t ∈ [0, T ] and κ (t ) = 0 otherwise [2–6,17,21]. Then
the Hamiltonian is time independent throughout the duration
of the measurement. One assumes that S starts in an eigenstate
of ĤS at t = 0, with the result of the measurement evaluated at
t = T . It is customary to neglect the self-Hamiltonian ĤP of
P, such that the evolution of P is entirely due to the coupling
to S (we will relax this assumption in Sec. III C below).

We focus on the case of a qubit system, with ĤS = 1
2 h̄ω0σ̂z

and arbitrary qubit observable ÔS = σ̂ · m̂, where we express
the unit vector m̂ in terms of polar and azimuthal angles γ and
η, m̂ = (cos η sin γ , sin η sin γ , cos γ ). We consider a probe
represented by a qubit acting as an ancilla (for a study of
the use of a qubit probe in weak-value measurements [1],
see Ref. [33]). Then the pointer observable is ÔP = σ̂ · n̂,
which generates rotations of the state of P on the Bloch sphere
around the n̂ axis. Thus, the pointer shift is represented by a
qubit rotation, and the Hamiltonian governing the evolution of
the system and probe qubits during the measurement interval
t ∈ [0, T ] is

Ĥ = ĤS + Ĥm = 1

2
h̄ω0σ̂z + h̄λ

T
(σ̂ · m̂) ⊗ (σ̂ · n̂), (2)

where λ is a dimensionless constant of order unity that we will
fix below.

The evolution given by this Hamiltonian can be solved
exactly. For each of the two eigenstates |±〉n̂ (with eigenvalues
±1) of the probe part σ̂ · n̂ of the Hamiltonian, we can
consider a corresponding effective Hamiltonian Ĥ± for the
system qubit S given by

Ĥ± = 1

2
h̄ω0σ̂z ± h̄λ

T
(σ̂ · m̂) ≡ 1

2
h̄ω0(σ̂ · ŵ±). (3)

The components of ŵ± are

w±
x = ±2λξ cos η sin γ , (4a)

w±
y = ±2λξ sin η sin γ , (4b)

w±
z = 1 ± 2λξ cos γ , (4c)

where the dimensionless constant ξ = (ω0T )−1 measures the
strength of the measurement interaction Ĥm relative to the
protection Hamiltonian ĤS . The magnitude of ŵ± is

χ± = [1 + (2λξ )2 ± 4λξ cos γ ]1/2. (5)

The eigenstates of the Hamiltonian Ĥ± defined in Eq. (3) are

|φ±
0 〉 = cos

θ±
2

|0〉 + sin
θ±
2

eiφ± |1〉, (6a)

|φ±
1 〉 = sin

θ±
2

|0〉 − cos
θ±
2

eiφ± |1〉, (6b)

where θ± and φ± are the polar and azimuthal angles of
ŵ± (where cos θ± = w±

z χ−1
± ), and the eigenvalues are E±

0 =
+ 1

2 h̄ω0χ± and E±
1 = − 1

2 h̄ω0χ±.
Following the protective-measurement protocol, we take

the initial state of S (at t = 0) to be the eigenstate |0〉 of ĤS ,
where we may write |0〉 = cos θ±

2 |φ±
0 〉 + sin θ±

2 |φ±
1 〉. Then,

for an arbitrary pure initial probe state |ψP(0)〉 = c+|+〉n̂ +
c−|−〉n̂, the final system-probe state at t = T is

|
(T )〉 = c+

[
e−iω0χ+T/2 cos

θ+
2

|φ+
0 〉

+ e+iω0χ+T/2 sin
θ+
2

|φ+
1 〉

]
|+〉n̂

+ c−

[
e−iω0χ−T/2 cos

θ−
2

|φ−
0 〉

+ e+iω0χ−T/2 sin
θ−
2

|φ−
1 〉

]
|−〉n̂. (7)

In an ideal protective measurement, the measurement inter-
action is weak compared to ĤS , i.e., ξ � 1. Then χ± ≈ 1 ±
2λξ cos γ [see Eq. (5)] and θ+ ≈ θ− � 1, and the state (7)
becomes

|
(T )〉 ≈ e−iω0T/2|0〉[c+e−iλ cos γ |+〉n̂ + c−e+iλ cos γ |−〉n̂]

= e−iω0T/2|0〉e−iλ cos γ (σ̂·n̂)|ψP(0)〉. (8)

Therefore, the measurement interaction rotates the probe state
around the n̂ axis on the Bloch sphere by an angle

�(γ ) = 2λ cos γ = 2λ〈0|σ̂ · m̂|0〉, (9)

where 〈0|σ̂ · m̂|0〉 is the expectation value of σ̂ · m̂ in the
initial state of S. Thus, as expected from the general theory
of ideal protective measurements [2–6], the probe pointer is
shifted by an amount proportional to 〈0|σ̂ · m̂|0〉 while the
state of S remains approximately unchanged.

B. Probe readout

Our analysis suggests the following strategy for generating
and measuring the pointer shift, i.e., the probe rotation (see
also Ref. [33] for a similar scheme but applied to weak-value
measurements [1]). We choose an arbitrary probe rotation axis
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n̂ and initialize the probe in an eigenstate of σ̂ · n̂⊥, where
n̂⊥ is a unit vector perpendicular to n̂. The interaction with
the qubit system S will then rotate the probe state out of the
plane spanned by n̂ and n̂⊥, such that the state acquires a
component in the direction given by n̂ × n̂⊥. We choose the
constant λ such that for the maximum value cos γ = 1 (which
corresponds to 〈0|σ̂z|0〉) the rotation angle is such that the
probe ends up in a state perpendicular to the plane spanned
by n̂ and n̂⊥, i.e., that it points in the direction given by
k̂ = n̂ × n̂⊥. This implies a maximum rotation angle of ±π/2
on the Bloch sphere and hence the choice λ = π/4.

Since the rotation angle �(γ ) encodes the desired expec-
tation value 〈0|σ̂ · m̂|0〉 [see Eq. (9)], readout of the pointer
corresponds to measuring this rotation angle. This can be done
by measuring the expectation value of the observable σ̂ · k̂
on the probe, which gives the component of the Bloch vector
along the k̂ axis. For an ideal protective measurement, the total
rotation angle around the n̂ axis is π

2 〈0|σ̂ · m̂|0〉 [see Eq. (9)],
and thus in this case the corresponding pointer expectation
value at t = T is given by

〈σ̂ · k̂〉 = 〈
(T )|(Î ⊗ σ̂ · k̂)|
(T )〉 = sin
(π

2
〈0|σ̂ · m̂|0〉

)
,

(10)

with |
(T )〉 given by Eq. (8). We will refer to the expectation
value (10) as the ideal value from here on.

Measurement of 〈σ̂ · k̂〉 may be accomplished by repeating
the following procedure: (i) initialization of the probe P in
the state |ψP〉; (ii) interaction of P with the system S for
a time T ; and (iii) measurement of σ̂ · k̂ on P (see Sec. V
for a discussion and comparison of this readout to the case
of a phase-space probe). Note that nonetheless only a sin-
gle system S is required, and its quantum state will remain
approximately unchanged throughout the process. Thus, the
essential feature of a protective measurement is preserved,
namely, that it allows us to measure an expectation value for
an individual system, with in principle arbitrarily small state
disturbance (see also Secs. III B and V for further analysis).

Since we are free to select an arbitrary orientation of the
rotation axis for the probe, in what follows we will choose,
for ease of notation and visualization, the probe rotation to be
about the y axis. Thus the system-probe Hamiltonian (2) (with
λ = π/4) assumes the form

Ĥ = ĤS + Ĥm = 1

2
h̄ω0σ̂z + h̄

T

π

4
(σ̂ · m̂) ⊗ σ̂y. (11)

We shall also take the initial probe state to be the eigenstate |0〉
of σ̂z. Thus, the system and probe states are initially aligned.
(In practice, one does not necessarily know the state of the
system [4,5], and so one would simply choose the initial probe
state along some arbitrary axis perpendicular to the rotation
axis, as discussed above.) Then the rotation angle of the probe
is obtained by measuring the expectation value 〈σ̂x〉 on the
probe.

C. Gate representation of protective measurement

We note here that the evolution generated by the Hamil-
tonian (11) may be thought of as a controlled-rotation gate

[34]. This is so because for an ideal protective measurement
the evolution is

|0〉S|0〉P −→ |0〉SR̂y

(π

2
〈0|σ̂ · m̂|0〉

)
|0〉P, (12a)

|1〉S|0〉P −→ |1〉SR̂y

(π

2
〈1|σ̂ · m̂|1〉

)
|0〉P

= |1〉SR̂y

(
−π

2
〈0|σ̂ · m̂|0〉

)
|0〉P, (12b)

where R̂y(�) = e−i�σ̂y/2 = cos �
2 Î − i sin �

2 σ̂y is the rotation
operator for rotations by � around the y axis on the Bloch
sphere. The matrix representation of the controlled-rotation
gate (12) therefore is⎛

⎜⎝
cos �m̂ − sin �m̂ 0 0
sin �m̂ cos �m̂ 0 0

0 0 cos �m̂ sin �m̂
0 0 − sin �m̂ cos �m̂

⎞
⎟⎠, (13)

where �m̂ = π
4 〈0|σ̂ · m̂|0〉 = π

4 cos γ . This gate is different
from the usual controlled-rotation gates considered in quan-
tum computation, because the state of the system qubit deter-
mines both the sign and the angle of the rotation.

III. NONIDEAL MEASUREMENTS

The ideal protective measurement as represented by Eq. (8)
is based on the assumptions that the measurement strength
ξ is vanishingly small and that the self-Hamiltonian of the
probe can be neglected. In Secs. III A and III C, we will
relax these assumptions and study the resulting effect on the
dynamics and relevant expectation values. We will also study
the influence of interactions with an environment during the
measurement (Sec. III D).

A. Noninfinitesimal measurement strengths

We consider the realistic case of nonideal protective mea-
surements in which the measurement strength ξ is small but,
unlike in an ideal protective measurement, noninfinitesimal.
In this case, the system and probe will become entangled
[5,35], which has several effects. At the level of the system, it
results in a change of its state during the measurement [17,21].
At the level of the probe, its rotation angle will be influenced,
and the probe state will become partially mixed.

First, by using the exact expression (7) for the final joint
state of system S and probe P, we find that the ideal value
(10) for the probe expectation value is correct to first order
in ξ . To explore deviations from this first-order treatment,
in Fig. 1 we show results of numerical calculations [36]
for the evolution of the system and probe qubits during the
measurement interval t ∈ [0, T ] generated by the Hamiltonian
(11) and for different measurement strengths ξ , visualized on
the Bloch sphere.

We see that, as expected [17,21], the disturbance of the
state of the system S by the measurement decreases as ξ

becomes smaller. We quantify this disturbance D in terms of
the smallest overlap between the time-evolved state ρ̂S (t ) of S
with the initial state |0〉 over the course of the measurement,
which we can express as

D = 1 − min
0�t�T

Tr[ρ̂S (t )σ̂z]. (14)
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(a) (b) (c)

x

y

|0〉

|1〉||||111111〉〉||11||111〉1〉1〉

xxx x

y

|0〉

|1〉||||11111〉〉||11||111〉1〉1〉

xxx x

y

|0〉

|1〉||||111111〉〉||11||111〉1〉1〉

xxx

FIG. 1. (a) ξ = 0.5. (b) ξ = 0.1. (c) ξ = 0.01. Time evolution of the system state (blue) and probe state (red) on the Bloch sphere, as
generated by the Hamiltonian (11). The strength ξ of the measurement interaction (relative to the self-Hamiltonian of the system) decreases
from (a) to (c). The measured system observable is σ̂ · m̂ with m̂ = (1, 1, 1). Both system and probe are initialized in the state |0〉, and the
interaction rotates the probe state about the y axis. The states at the conclusion of the measurement at t = T are shown as vectors. The rotation
angle at t = T expected for an ideal protective measurement is shown as a dot (green).

For ξ = 0.5, the state disturbance of the state of S is signif-
icant (D = 49%) and the purity of the final states of S and
P is only 0.82, indicating substantial entanglement between
system and probe. For ξ = 0.1, the state disturbance for S has
become very small (D = 3%), and the final states of S and P
retain nearly complete (0.99) purity. Thus, the measurement
can be considered protective. For ξ = 0.01, the state distur-
bance of S is negligibly small.

Looking at the rotation of the probe qubit P as shown in
Fig. 1, we first note that it is always in the xz plane, which is
expected since the probe evolution is solely due to the σ̂y term
in Eq. (11). We also see that, as the measurement strength
decreases, the total rotation angle of the probe qubit quickly
approaches the value for an ideal protective measurement (as
indicated by a dot in Fig. 1). Recall that the rotation angle can
be obtained from the expectation value 〈σ̂x(t )〉 for the probe
(see Sec. II B). We can then compare this expectation value
at the conclusion of the measurement (t = T ) to the value
sin ( π

2 〈0|σ̂ · m̂|0〉) [see Eq. (10)] expected for an ideal protec-
tive measurement. For ξ = 0.5, the expectation value 〈σ̂x(T )〉
differs substantially (22%) from the ideal value, indicating
that in this regime the pointer shift (i.e., the rotation angle)
does not yet faithfully reproduce the ideal value. For ξ = 0.1,
the difference between actual and ideal expectation values is
only 1.5%.

B. Repeated measurements

As discussed in Sec. II B, probe readout requires measure-
ment of an expectation value. In practice, such a measure-
ment may be realized through N repeated cycles consisting
of probe preparation, system-probe interaction, and probe
measurement. Since the state of the system at the end of the
nth measurement becomes the initial state of the system for
the (n + 1)th measurement, the disturbance imparted on the
system becomes propagated through the series of consecutive
measurements. This raises the question of how the perfor-
mance of the scheme will be affected by such a series of
protective measurements.

To explore this issue, we study the time evolution of the
system and probe states in the course of N = 10 consecutive

measurements. Each measurement is of duration T , and the
probe is initialized in the same state (the eigenstate |0〉 of σ̂z,
as before) at the start of each measurement. The results are
shown in Fig. 2, where we also display the probe states at
the end of each of the ten measurements. If the measurement
interaction is only moderately weak (ξ = 0.1), then, as ex-
pected, the accumulated state disturbance of the system will
be significant, around 25%, with a purity of 0.88. The final
individual probe states are seen to differ somewhat, since
each of them corresponds to the measurement of a slightly
different system state. As expected, the difference between
actual and ideal values for the expectation value quantifying
the probe rotation increases along the chain of measurements,
because the system increasingly departs from its initial state
as the number of measurements increases. As a worst-case

(a) (b)

x

y

|0〉

|1〉||||1111〉〉||11||111〉1〉1〉

xxx x

y

|0〉

|1〉||||11111〉〉||11||111〉1〉1〉

xxx

FIG. 2. (a) ξ = 0.1. (b) ξ = 0.05. Time evolution of the system
state and probe states during a series of ten consecutive measure-
ments, shown for two different measurement strengths ξ . At the
start of each measurement, the probe is initialized in the same
state |0〉, while the state of the system evolves along the chain of
measurements, each of which is described by the Hamiltonian (11).
The blue vector near the z axis of the Bloch sphere shows the final
state of the system (at t = 10T ). The remaining vectors represent
the probe states at the conclusion of each of the ten individual
measurements (for ξ = 0.05, these vectors essentially coincide and
thus appear as a single vector).
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(a) (b) (c)

x

y

|0〉

|1〉||||1111〉〉||11||111〉1〉1〉

xxx x

y

|0〉

|1〉||||1111〉〉||11||111〉1〉1〉

xxx x

y

|0〉

|1〉||||1111〉〉||11||111〉1〉1〉

xxx

FIG. 3. (a) σ̂y, δP = 0.3. (b) σ̂x , δP = 0.3. (c) σ̂x + σ̂y + σ̂z, δP = 0.05. Time evolution of the system state (blue) and probe state (red) in
the presence of intrinsic probe dynamics generated by a self-Hamiltonian ĤP = h̄π

4T δP(σ̂ · r̂). The Pauli operator (σ̂ · r̂) and the parameter δP

quantifying the strength of ĤP relative to the interaction Hamiltonian Ĥm are shown for each panel. The measurement strength is ξ = 0.1, and
the measured system observable and initial states are the same as in Fig. 1.

estimate, we take the probe state obtained from the final
measurement to estimate the difference between actual and
ideal values for the probe rotation, which gives 24%. When
we instead average over all ten probe states, the difference
is 14%.

The detrimental influence of multiple measurements on
the quality of the protective measurement rapidly diminishes
as the interaction is made weaker. For ξ = 0.05 [shown in
Fig. 2(b)], the cumulative disturbance of the state of the
system is reduced to only 1.6%. The Bloch vectors of all final
probe states are seen to coincide, with a difference between
ideal and actual values for the probe rotation of only 0.7%
using the worst-case estimate. For ξ = 0.01, no discernible
difference is observed, in terms of state disturbance and
faithfulness of the probe rotation, for the series of ten protec-
tive measurements when compared to a single measurement.
These results suggest that the need for multiple system-probe
interactions and subsequent probe readouts does not pose a
significant challenge to the protective-measurement scheme
based on a qubit probe.

C. Intrinsic probe dynamics

So far, we have neglected the self-Hamiltonian ĤP of the
probe. This approximation is common to most considerations
of protective measurement (but see Ref. [5] for some general
results on the influence of a nonzero probe Hamiltonian).
To explore the influence of intrinsic probe dynamics in our
model, we add to the Hamiltonian (11) a generic probe
self-Hamiltonian ĤP = 1

2 h̄ωP(σ̂ · r̂). This Hamiltonian will
contribute a rotation of the probe state around the r̂ axis. Thus,
the evolution of the probe will now consist of a rotation around
a new axis given by a linear combination of the y and r̂ axes.

Clearly, for the probe to faithfully encode the desired
expectation value of the system, the contribution of the r̂ axis
to the net axis should in general be small, such that the probe
dynamics are dominated by the interaction with the measured
qubit system S (indeed, this is a sensible requirement for any
quantum system designated to act as a measuring device).
To ensure that this condition holds for any choice of r̂, one
therefore needs to require that ĤP be small compared with
the interaction Hamiltonian Ĥm. Since the strength of Ĥm is

given by h̄π/4T [compare Eq. (11)], we quantify the strength
of ĤP relative to Ĥm by writing ωP = π

2T δP, where δP is
a dimensionless parameter that represents the ratio of the
strength of ĤP to the strength of Ĥm.

The particular effect of ĤP on the probe rotation will
depend on the choice of the r̂ axis. If r̂ = ŷ, i.e., if the probe
Hamiltonian ĤP is proportional to σ̂y, then this Hamiltonian
will leave the probe state in the xz plane but add a constant
1
2ωPT = π

4 δP to the rotation angle. This is illustrated in
Fig. 3(a) for a moderately weak probe Hamiltonian (δP =
0.3). The overshoot of the rotation is clearly seen, and we
find that the expectation value 〈σ̂x(T )〉 quantifying the rotation
angle differs by 22% from the value (10) that would be
obtained for an ideal protective measurement with ĤP = 0.

Next, let us consider the situation in which the probe
Hamiltonian ĤP is proportional to σ̂x. The net rotation axis
is now in the xy plane, and the probe state will be rotated
out of the xz plane [see Fig. 3(b)]. However, because the
change in the rotation axis due to ĤP is perpendicular to the
σ̂y rotation axis for the system-probe interaction, the influence
on the projection of the Bloch vector on the x axis [as given by
〈σ̂x(T )〉] can be less dramatic as in the previous case of r̂ = ŷ.
Indeed, for the example shown in Fig. 3(b), the difference
between ideal and actual values of 〈σ̂x(T )〉 is only 5% at
δP = 0.3. Finally, Fig. 3(c) shows the evolution when the
probe Hamiltonian ĤP is proportional to σ̂x + σ̂y + σ̂z [i.e.,
r̂ = (1, 1, 1)/

√
3] and its strength is reduced to δP = 0.05.

As expected, now the probe rotation is only insignificantly
influenced by the intrinsic probe dynamics, and the difference
between ideal and actual values of 〈σ̂x(T )〉 is 2%. One would
not expect the addition of a self-Hamiltonian for the probe to
affect the purity of the final system and probe states, because
no entanglement is created by this Hamiltonian. We have
explicitly confirmed this expectation by calculating the state
purities in each of the cases shown in Fig. 3 and finding the
same purity value (0.99) as in the absence of ĤP.

We have seen that in the case where the axis r̂ for the
intrinsic rotation coincides with the axis for the probe rotation
due to the measurement interaction (here the y axis), the effect
of the probe Hamiltonian is to produce a simple overshoot
of the probe state [as shown in Fig. 3(a)], i.e., the effect is
to modify the rotation angle but not the rotation axis. Such
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FIG. 4. (a) σ̂y. (b) σ̂x . Effect of an applied counter-rotation to
mitigate the effect of the intrinsic probe dynamics. The evolution
of the probe state during the measurement is shown in red, and the
subsequent correcting evolution due to the applied counter-rotation
is shown in green. The evolution of the system state (blue) is the
same as in Fig. 3(a) and shown for reference. (a) When the intrinsic
probe dynamics produce a rotation around the same axis as the mea-
surement interaction, the effect of the intrinsic dynamics is reversed.
(b) When the intrinsic rotation is instead around the x axis, the
expectation value 〈σ̂x〉 remains unchanged by the counter-rotation.
The parameter values are δP = 0.3 and ξ = 0.1, and the measured
system observable and initial states are the same as in Fig. 1.

an overshoot of the probe is easily corrected by applying a
counter-rotation to the probe qubit after its interaction with the
system. Since we can take the probe Hamiltonian to be known,
the relevant parameters (ωP and T , or equivalently δP) needed
to choose the compensating rotation angle will also be known.
This strategy is shown in Fig. 4(a). The final state of the probe
now correctly indicates the desired expectation value (2%
difference to the ideal value). This correction strategy does
not work adequately, however, when the axes defining the
measurement rotation and the intrinsic rotation of the probe
are different. The extreme case is that of an intrinsic rotation
around the x axis [see Fig. 4(b)]. Since the counter-rotation
around x will preserve the value of 〈σ̂x〉, it will not improve
the fidelity of the measurement result. These results suggest
that in cases where the intrinsic dynamics of the probe during
the measurement are significant the measurement interaction
should be chosen such that the probe rotation is around the
same axis as the rotation produced by the intrinsic dynamics.

D. Interactions with an environment

In the Hamiltonian (11), the only interaction of the system
qubit is with the probe qubit. In realistic physical settings
(such as the ion-trap experiment proposed in Sec. IV), both
qubits may also be subject to decoherence and dissipation due
to interactions with their environment (noise processes give
rise to phenomenologically similar effects) [37]. We will now
include such environmental effects in the Hamiltonian (11) by
coupling both qubits to bosonic baths. We model the resulting
dynamics in terms of a Lindblad master equation [37] for the

x

y

|0〉

|1〉||||11111〉〉||11||111〉1〉1〉

xxx

FIG. 5. Time evolution of the system state (blue) and probe state
(red) when the system is coupled to a bosonic environment via the σ̂z

coordinate. The dynamics are modeled in terms of the Lindblad mas-
ter equation (15). The rate is κS = 0.02, the measurement strength is
ξ = 0.1, and the measured system observable and initial states are
the same as in Fig. 1.

joint density operator ρ̂SP(t ) of the system S and the probe P:

∂

∂t
ρ̂SP(t ) = − i

h̄
[Ĥ ′

S, ρ̂SP(t )] − 1

2

∑
k=S,P

κk[L̂k, [L̂k, ρ̂SP(t )]],

(15)
where Ĥ ′ is the Hamiltonian (11) renormalized by the en-
vironment, L̂S = (σ̂ · êS ) ⊗ Î and L̂P = Î ⊗ (σ̂ · êP ) are the
Lindblad operators representing the coupling of S and P to
the environment, and κS and κP are the corresponding rates.

Since the system S remains throughout the measurement
close to the eigenstate |0〉 by virtue of its dominant self-
Hamiltonian ĤS , a coupling to the environment via its σ̂z

coordinate is expected to have little effect on the evolution.
This is illustrated in Fig. 5. Comparison with Fig. 1(b) for
the evolution in the absence of an environment indicates that
the environment has indeed no significant influence, and no
discernible decrease in purity of the final system and probe
states is observed.

To produce an appreciable effect of the environment, let
us now choose a coupling for both system S and probe P
via their σ̂x coordinates. The resulting time evolution of the
system and probe states is shown in Fig. 6. In Fig. 6(a), only
the system S couples to the environment. The Bloch vector
representing the state of S remains close to the z axis but
is substantially shortened in length, indicating an incoherent
mixture (purity 0.83) of |0〉 and |1〉 with a sizable probability
of finding the system in the state |1〉. This behavior is ex-
pected, since the coupling to the environment via σ̂x induces
transitions between |0〉 and |1〉. The state disturbance is 35%,
a significant impact on the protective measurement given its
goal of leaving the initial state of the system approximately
unchanged. Moreover, Fig. 6(a) shows that although the probe
does not couple directly to the environment its rotation angle
is also affected. This, too, is expected, because the evolution
of the probe is entirely governed by its coupling to the system
qubit S interacting with the environment, and probe rotation at
any instant depends on the state of S. Thus, the environment-
induced changes of the state of S translate into changes in the
probe evolution, in our example resulting in a 19% difference
between actual and ideal values of 〈σ̂x(T )〉. A small decrease
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FIG. 6. (a) κS = 0.02, κP = 0. (b) κS = 0, κP = 0.02. (c) κS = κP = 0.02. Time evolution of the system state (blue) and probe state (red)
in the presence of an environment. System and probe are coupled to bosonic baths through their σ̂x coordinates, and the dynamics are modeled
in terms of the Lindblad master equation (15). The chosen rates κS and κP of the environment-induced processes are shown in each panel. The
measurement strength is ξ = 0.1, and the measured system observable and initial states are the same as in Fig. 1. (a) Evolution when only
the system couples to the environment. (b) Evolution when only the probe couples to the environment. (c) Evolution when both the system
and the probe couple to the environment.

in purity (0.95) of the probe state is also observed. This is
reasonable, since the probe becomes entangled with a system
that is in turn entangled with the environment, leading to an
overall increase in the amount of entanglement of the probe.

Figure 6(b) shows the evolution if only the probe interacts
with the environment. The influence of the environment on the
evolution of the probe is clearly seen. The rotation remains in
the xz plane, but the shortening of the Bloch vector indicates
that the probe state becomes appreciably mixed (purity 0.87)
due to the entanglement with the environment. The difference
between actual and ideal values of 〈σ̂x(T )〉 is 19%. We also
see that the state of the system S is not affected by the
environment. This is expected, because the coupling of S to
P is weak compared to the intrinsic evolution generated by
the self-Hamiltonian of S.

Finally, Fig. 6(c) shows the evolution when both the system
and the probe couple to the environment. Now the probe state
is doubly affected, both by the direct coupling to its own
environment and by the indirect coupling to the environment
of the open system S. Accordingly, the Bloch vector of the
probe state is further shortened compared to Fig. 6(b), indicat-
ing an increase in mixedness (purity 0.83), and the difference
between actual and ideal values of 〈σ̂x(T )〉 rises to 32%.

IV. PROPOSED EXPERIMENTAL IMPLEMENTATION

The protective-measurement model described in this paper
can be experimentally realized with trapped ions using exist-
ing technology. All the necessary components, including state
preparation, implementation of the relevant single- and two-
qubit Hamiltonians, and final-state readout, are already part of
existing ion-trap experiments used for quantum computation
[22] and quantum simulations of spin systems [23–30]. In
such experiments, the qubit states |0〉 and |1〉 (eigenstates of
the σ̂z operator) are formed by two internal electronic levels of
an atomic ion. Preparation of the qubit state through optical
pumping is accomplished within a few microseconds and
achieves purities in excess of 99.9% [32]. State-dependent
fluorescence can be used to measure the final qubit states
with efficiencies >99% [31,32]. The protective-measurement

Hamiltonian (2) requires implementation of a protection term
σ̂z and an interaction term (σ̂ · m̂) ⊗ (σ̂ · n̂), with the pro-
tection term dominant. Both terms, with adjustable relative
strengths, can be realized by the simultaneous application of
suitable external laser fields that couple qubit levels either
directly or via the phonon modes that describe the collective
vibrational motion of the trapped ions [22,30,38–41]. These
are precisely the interactions used in ion traps for implement-
ing quantum gates [22] and for simulating the quantum dy-
namics of spin systems subject to magnetic fields [23–30]. We
will now briefly describe the relevant experimental procedures
(see, e.g., Ref. [30] for details).

A common approach is to apply site-dependent optical
Raman beams to selected ions, with beatnotes between the
beams tuned to specified frequencies such as to give rise to the
desired Hamiltonians [22,30,39,41]. When the beatnote for
Raman beams focused on a given ion is tuned to the resonant
frequency ω0 between the qubit levels, a Hamiltonian of the
form

Ĥφ = 1
2 h̄�σ̂φ (16)

can be realized [30,41,42]. Here � denotes the resonant Rabi
frequency (which can be adjusted by varying the detuning of
the laser beams from the intermediary excited state connecting
the qubit states via the Raman process [30,41]), and

σ̂φ = σ̂x cos φ − σ̂y sin φ, (17)

where the angle φ can be precisely controlled via the phase
of the Raman beatnote. If the beatnote is tuned away from
resonance, one can make use of a differential ac Stark shift
between the qubit levels to realize a Hamiltonian proportional
to σ̂z [30,43–45]. By addressing each ion with laser beams of
specific intensity and detuning, a wide range of site-specific
single-ion Hamiltonians can be implemented [29,30,45–47].
For example, in Refs. [29,46,47] this is achieved by deflect-
ing a detuned laser beam from an acousto-optical deflector
driven by a set of radio frequencies, generating indepen-
dent, precisely controllable ac Stark shifts for each ion. This
method for implementing tunable single-qubit Hamiltonians
in ion traps has been used in several experiments to simulate
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disorder-inducing, site-specific transverse (axial) magnetic
fields in many-spin systems [29,30,46,47].

Two-qubit interaction Hamiltonians of the form Ĥ ∝ (σ̂ ·
m̂) ⊗ (σ̂ · n̂), as needed for implementation of the system-
probe Hamiltonian Ĥm in Eq. (2), can be realized in the
same way as two-qubit gates in ion-trap quantum computation
[22,23,38–41]. Just like the single-ion Hamiltonians, they are
implemented via appropriately tuned laser beams applied to
the ions [22,23,30,38–41]. Specifically, tuning the Raman
beatnote to the vicinity of the phonon modes (the “resonant
regime” [23,38]) gives rise to an effective spin-spin interaction
between the ions mediated by the collective motional state of
the ions [22,23,38–41]. For example, by simultaneously ad-
dressing two ions with bichromatic beatnotes symmetrically
detuned from the blue and red vibrational sidebands, we can
generate interaction Hamiltonians of the form [30,38–41]

Ĥ = h̄J0σ̂
(1)
θ σ̂

(2)
θ , (18)

where

σ̂
(i)
θ = σ̂ (i)

x sin θ + σ̂ (i)
y cos θ. (19)

The coupling strength J0 can be precisely controlled via the
detuning of the Raman beams [25,26,30,39] or via local
spatial control [28], and the Bloch angle θ can be con-
trolled by means of the phases of the beatnotes [30]. Such
interactions, applied to larger systems of trapped ions with
each ion addressed locally by specific beatnotes and laser
intensities, are also used in simulations of many-spin systems
for implementing Ising-type Hamiltonians of the form Ĥ =
h̄

∑
i j Ji j σ̂

(i)
θ σ̂

( j)
θ [24–27,29,30,46,47]. While in our applica-

tion to protective measurement only two-qubit interactions
are needed, such trapped-ion simulators are a particularly
attractive platform for the experimental realization of the
protective-measurement interaction due to their ability to
precisely program and gate the desired Hamiltonians, with
full control over the structure and strength of the interactions
[25,26,28–30,46,47].

Thus, by addressing trapped ions with a combination of the
laser fields we have described, we can simultaneously apply to
the system qubit a local protection Hamiltonian proportional
to σ̂φ [see Eq. (17)] or σ̂z with adjustable strength, and to
the system and probe qubits a variety of interaction Hamil-
tonians Ĥm = h̄J0(σ̂ · m̂) ⊗ (σ̂ · m̂) with adjustable strength
J0, representing protective measurements of different system
observables σ̂ · m̂. As an example, suppose we choose the
beatnote phase such that φ = 0 in Eq. (16) and therefore the
protection Hamiltonian becomes ĤS = 1

2 h̄�σ̂x. Then a contin-
uous range of measurement orientations m̂ can be realized by
choosing different values for the angle θ in Eq. (19), which,
as mentioned, can be done by tuning the beatnote phases
for the Raman beams producing the two-qubit interaction.
Note that π

2 − θ is precisely the angle γ defined in Sec. II A,
since γ specifies the direction of the measured observable
relative to the protection direction (here x̂). For an interaction
Hamiltonian of the form (σ̂ · m̂) ⊗ (σ̂ · m̂), the rotation of the
probe qubit will be around the same axis m̂ that defines the
measurement. This, however, implies no loss of generality
since the choice of the probe rotation axis is arbitrary and
irrelevant to the physics of a protective measurement.

Since one can address each ion individually without ap-
preciably affecting other ions in the trap [22,29,30], we can
realize ĤP ≈ 0 for the probe qubit as required for an optimal
protective measurement [compare Eq. (2)]. Thus, we can
avoid the complications arising from intrinsic probe dynamics
as discussed in Sec. III C. But this same site-specific address-
ing of the ions also enables us to experimentally explore, in
a controlled way, the influence of intrinsic probe dynamics
on a protective measurement, using the same techniques just
described for the system qubit. By varying the parameter φ in
Eq. (17) through adjustment of the Raman beatnote phase, we
can experimentally test the influence of the probe dynamics
not only for different strengths of the probe Hamiltonian, but
also for different probe rotation axes as studied in Sec. III C.

Experimentally available parameter values are well suited
to the implementation of a protective measurement. As an ex-
ample, let us consider the experiment described in Ref. [46]. It
uses a string of 40Ca+ ions confined in a linear Paul trap, with
the qubit states |0〉 and |1〉 represented by the Zeeman sub-
levels |S1/2, mj = 1/2〉 and |D5/2, mj = 5/2〉. The experiment
uses a bichromatic laser beam to realize (here we consider
only two neighboring ions in the trap) an interaction Hamil-
tonian Ĥint = h̄J0σ̂xσ̂x with J0 ≈ 400 s−1. The site-specific ac
Stark shift, implemented with a detuned laser beam deflected
from an acousto-optical deflector, realizes a Hamiltonian Ĥ =
h̄�iσ̂

(i)
z for each ion i. The strength �i can be adjusted

independently for each ion over the range �i ∈ [0, 6J0]. For
application to an ideal protective measurement, we let �1

refer to the system qubit and �2 = 0 to the probe qubit (where
we may also choose �2 �= 0 to implement intrinsic probe
dynamics). The adjustable ratio J0/�1 corresponds precisely
to the measurement strength ξ defined and used in Secs.
II and III, and thus the experiment achieves measurement
strengths as low as ξmin = 0.17. (Similarly, the experiment
in Ref. [29], which employs two hyperfine “clock” states
of a 171Yb+ ion as qubit levels, uses �i ∈ [0, 8J0], giving
ξmin = 0.13.) Thus, experiments of this kind not only allow
one to adjust the measurement strength, but they also reach the
desired weak-measurement regime with ξ substantially below
1. The value J0 ≈ 400 s−1 in the experiment of Ref. [46]
implies a timescale T for the interaction on the order of a few
milliseconds, which can be precisely controlled and resolved.

The influence of an environment on the protective-
measurement process as discussed in Sec. III D can also be
experimentally investigated with such experiments. For exam-
ple, in Ref. [47] tunable dephasing between the qubit states
was experimentally introduced through controlled temporal
modulations of the ac Stark shifts for each ion. This amounts
to adding a stationary noise term h̄Wi(t )σ̂z with adjustable
spectral power to the self-Hamiltonian for each ion.

V. DISCUSSION

We have considered a variant of a protective qubit mea-
surement in which the probe is represented by a two-state
system, rather than by a continuous phase-space degree of
freedom. This model reproduces the essence of a protective
measurement, namely, the transfer of information about the
expectation value for an observable of the system while
the state of the system is left approximately undisturbed.
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One motivation for considering a qubit probe is the relative
ease with which the protective measurement may be experi-
mentally implemented.

The evolution of the system is seen as a precession of
the Bloch vector around the axis defined by the protection
field, while the Bloch vector for the probe is gradually rotated
around an arbitrarily chosen axis, with the rotation angle
encoding the desired expectation value for the system. Anal-
ysis of these dynamics demonstrates that even for an only
moderately weak measurement we can achieve both small
state disturbance for the system and a faithful pointer shift
for the probe. Our results also show that in cases where
the intrinsic dynamics of the probe during the measurement
are significant the measurement interaction should be chosen
such that the probe rotation is around the same axis as the
rotation produced by the intrinsic dynamics, since in this
case the effect of the intrinsic evolution on the measure-
ment outcome may be fully compensated for by an appro-
priately chosen counter-rotation. Furthermore, our analysis
illustrates how the influence of interactions with an envi-
ronment on the measurement depends on the form of the
environmental monitoring process, and how the coupling of
the system to the environment affects the evolution of the
probe even when the latter is not directly interacting with an
environment.

Because the desired expectation value is encoded in the
rotation angle of the probe qubit, readout of this information
requires the measurement of an expectation value on the
probe, and thus the accumulation of probe statistics from a
series of system-probe interactions and measurements of the
probe states. We have shown that even with such repeated
measurements low cumulative state disturbance and proper
probe rotation can be maintained, provided the measurements
are carried out in the weak regime (as is generally assumed
for a protective measurement).

We may also compare the need for measuring an expec-
tation value on the probe to the situation encountered for a
phase-space probe [5]. There, the change in the location of
the center of the pointer wave packet in the relevant variable
(position or momentum) represents the pointer shift. This lo-
cation (or, alternatively, its change) is given by the expectation
value for an appropriate pointer observable. Thus, in order to
precisely resolve the pointer shift, one will need to measure an
expectation value on the probe. This implies having to resort
to measurements on an ensemble of probes, each of which
has interacted with the system via the protective-measurement
coupling, or otherwise perform multiple measurements on
the same probe, possibly by using quantum nondemolition
schemes (see Sec. IV of Ref. [5] for a discussion of these
options). In this way, the situation with regard to the readout
of a phase-space probe is similar to that for a qubit probe. In
practice, the main difference is that if the pointer wave packet
for the phase-space probe starts out sufficiently narrow and
remains so throughout the measurement [48] then a single
measurement on the pointer may provide an estimate of the
wave-packet center with satisfactory precision (as determined
by the width of the wave packet), simply because the mea-
surement outcome is likely to fall in the vicinity of the

wave-packet center. By contrast, for a qubit probe an ensemble
of probe measurements is always required, since any single
(projective) measurement of a qubit observable will give just
one of two possible outcomes. Apart from this difference, a
protective measurement with a qubit probe has the same es-
sential features as that with a phase-space probe. In particular,
it requires only a single system qubit, the disturbance of the
system can be made arbitrarily small, and in each iteration
of the probe preparation-interaction-readout cycle the probe
is deterministically brought to the same final state, meaning
that complete information about the expectation value of the
system is deterministically transferred to the pointer during
each individual interaction with the probe.

One may wonder about the advantage of the protective-
measurement scheme given that one needs to measure an
expectation value on the probe in order to infer an expecta-
tion value of the system. To recognize this advantage, it is
important to remember that system and probe play fundamen-
tally different roles. The system is in an unknown quantum
state, which we would like to determine without appreciably
changing it (we refer here to the task of measuring a quantum
state rather than an expectation value, since measurement of
expectation values allows reconstruction of the state). The
probe, by contrast, merely plays the role of an ancilla. It can
be repeatedly prepared in an arbitrary state and subjected to
an arbitrary readout measurement, and the disturbance of its
state by such measurements is irrelevant. So, while one needs
to repeatedly measure the ancilla to obtain an expectation
value for it, what is achieved in this way is a measurement
of the state of the system while disturbing it arbitrarily little,
a nontrivial task [2–8].

A distinct advantage of using a qubit probe is the amenabil-
ity of the resulting protective-measurement scheme to ex-
perimental implementation using current technology. Given
that protective measurements (other than the conceptually
quite distinct quantum Zeno version [19]) have so far eluded
experimental realization, this is an important asset. As we
have discussed, existing ion-trap experiments already offer
all the techniques and tools needed for an experimental im-
plementation of a protective measurement using the scheme
described here, including high-fidelity state preparation and
readout, engineering of the relevant site-specific Hamiltonians
with precise control over their structure and strength, and
parameters well within the regime suitable for protective mea-
surements. Ion-trap quantum simulators of many-spin systems
[24–26,28–30] provide an especially promising experimental
platform, since they allow one to precisely design and tune
the Hamiltonians at the level of individual ions. In this way,
it should be possible not only to realize a single protective
measurement, but also to experimentally explore such mea-
surements in quantitative detail along the lines of the analysis
given in this paper. By varying the parameters of the optical
fields interacting with the trapped ions, one may implement
protective measurements of different observables, trace the
transition from ideal (state-preserving) to nonideal protective
measurements, study and control the influence of intrinsic
probe dynamics, and investigate the effect of environmental
interactions on the measurement.
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