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Protective measurements of photon polarization using a temporal pointer
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We experimentally demonstrate protective measurements by weakly coupling the polarization of a single-
photon-level field to a measurement pointer that corresponds to the arrival time of the photon. By using an
optical loop, we implement a variable, controlled number (1–9) of protection and measurement stages. We
demonstrate the measurement of expectation values of photon polarization by measuring arrival times while
simultaneously protecting the polarization state. No knowledge of the initial photon state is required or available
in our experiment, demonstrating that protective measurements provide a genuine information gain that cannot
simply be reduced to a priori information about the protection procedure.
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I. INTRODUCTION

Weak quantum measurements with postselection have be-
come an essential tool in quantum metrology and the study of
quantum phenomena [1–4]. Protective measurements (PMs)
[5–13] are a type of weak measurement in which a procedure
is added that prevents the state of the system from changing
appreciably during the measurement. The result of the PM
on a single system is the expectation value of an arbitrary
observable. PMs can provide better estimates of expectation
values (lower uncertainties) than could be achieved, using
comparable resources, with strong measurements (SMs) on
an ensemble [12]. Measurements with state protection also
provide an avenue for beating the Cramér-Rao bound [14].

A common version of a PM uses a state-protection proce-
dure based on the quantum Zeno effect [15–18] and is referred
to as a Zeno PM [6]. The system interacts repeatedly and
weakly with an apparatus, and between each interaction the
system is projected back onto its initial state, thus protecting
it. We refer to this combination of a weak interaction followed
by a protection step as a Zeno stage. The Zeno stages amount
to a series of identical weak measurements on the same sys-
tem, with the pre- and postselected states being the same, such
that the weak value [1,3] reduces to the expectation value.
The performance improves as the number of Zeno stages is
increased while the interaction strength for each stage is weak-
ened [6,12]. The expectation value is read off from the accu-
mulated pointer shift after all Zeno stages. This scheme does
not require knowledge of the initial state. It is only needed
that the state preparation and protection procedures project
onto the same (but potentially unknown) state. The first, and
previously only, experimental realization of a PM, based on
the Zeno scheme, was reported by Piacentini et al. [12,13],
using seven Zeno stages implemented as individual units.

Here, we report on the experimental realization of a Zeno
PM of photon polarization in which the photons are cycled
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through a loop constructed from an optical fiber, such that a
given photon will pass an adjustable number of times through
the same Zeno stage [19]. This loop configuration is advan-
tageous because (i) we do not need to physically implement
several individual Zeno stages and (ii) we can easily control
and adjust the number of stages. Furthermore, the partic-
ular state-protection method we use does not require, and
indeed precludes, knowledge of the initial photon state, even
in principle. Thus, our experiment explicitly demonstrates that
a Zeno PM can provide genuine information gain. (If the
protection necessitated knowledge of the state, the measured
expectation value could, instead, be simply calculated from
this information.)

In contrast to the spatial pointer shift used in Ref. [12],
we encode the measurement result in a temporal degree
of freedom. The temporal pointer shift is generated by a
polarization-dependent differential group delay (DGD) be-
tween the horizontal and vertical polarization directions, and
the shift of the pointer is obtained by measuring photon arrival
times. An advantage of a temporal pointer is that it is compat-
ible with the use of single-mode fibers, which eliminate the
spatial degrees of freedom available to free-space optics. The
use of DGD to realize general weak measurements of pho-
ton polarization was described in Ref. [20], and realizations
of such weak (but not protective) measurements in the time
domain were reported in Refs. [21,22].

This paper is organized as follows. Section II provides the
theory of a Zeno PM, applied to our experimental setting.
Section III describes our experimental apparatus and data
acquisition. Experimental results are presented in Sec. IV. We
offer a concluding discussion in Sec. V.

II. THEORY

A measurement interaction of duration �t between a quan-
tum system S and an apparatus A may be described in terms
of a unitary operation

Û = exp[−iξ (Ô ⊗ P̂)�t], (1)
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FIG. 1. Principle of a Zeno protective measurement. After each weak interaction with the measuring device, the system is projected back
onto its initial state |ψ0〉. Each dashed unit represents a Zeno stage.

where ξ is the coupling strength, Ô is an arbitrary observable
of S , and P̂ generates the shift of the pointer of A in the
conjugate variable q. We make the usual (and experimentally
appropriate) assumption that A starts out in a Gaussian of
width � in q, �(q) = 1√

�(2π )1/4 exp(− q2

4�2 ). In a weak mea-
surement, the coupling strength is small in the sense that
the shifts of the pointer induced by Eq. (1) for the different
eigenvalues of Ô are small compared to the width �. A
weak measurement consists of three stages: (i) the preparation
(preselection) of the initial state |ψ0〉 of S , (ii) the interaction
described by Eq. (1), and (iii) the postselection of S in a state
|ψp〉. Then one can show [1] that following postselection, the
pointer of A shifts by an amount ξOw�t , where

Ow = 〈ψp|Ô|ψ0〉
〈ψp|ψ0〉 (2)

is called the weak value of Ô.
The Zeno stages in a Zeno protective measurement [6]

effectively amount to a series of identical weak measurements
on the same system, with the pre- and postselected states being
the same (Fig. 1). Then the weak value (2) reduces to the
expectation value 〈Ô〉 = 〈ψ0|Ô|ψ0〉, which can be read off
from the pointer shift accumulated over multiple Zeno stages.

We now consider the case relevant to our experiment, in
which the pointer shift is produced by temporal DGD. Con-
sider the passage of a photon prepared in a polarization state
|ψ0〉 = cos θ |H〉 + sin θeiφ |V 〉 through a birefringent material
of length L. Let the group velocities be vg,H and vg,V for the
ordinary (H polarization) and extraordinary (polarization V )
rays, with corresponding travel times ti = L

vg,i
, i = H,V . Let

the pulse entering the material be described by a Gaussian of
duration τG,

E (t, z = 0) = E0e−(t/τG )2
, (3)

and let us associate a quantum state |φ(0)〉 with this pulse.
After passage through the birefringent material, the pulses
corresponding to the ordinary and extraordinary rays are

Ei(t, L) = E (t − ti, z = 0) = E0 exp

{
−

[
t − ti
τG

]2
}

, (4)

where i = H,V . Define the average travel time tavg = [tH +
tV ]/2 and the relative delay τ = tH − tV . Also, express all
times in terms of a dimensionless time variable t̃ = t/τG. Then
we can write

EH (t̃, L) = E0 exp{−[t̃ − (t̃avg − τ̃ /2)]2}, (5)

EV (t̃, L) = E0 exp{−[t̃ − (t̃avg + τ̃ /2)]2}, (6)

and we denote the associated quantum states by |φ(±τ/2)〉.
The interaction is assumed to be weak in the sense that
τ � τG, i.e., τ̃ = τ/τG � 1 (this means that the separation
of the temporal wave packets associated with the orthogonal
polarizations is incomplete). In analogy with Eq. (1), we can
model the relative temporal displacement ±τ̃ /2 in terms of a
unitary operator

Û (τ̃ ) = exp

[
−i

τ̃

2
Ô ⊗ Â

]
, (7)

where Ô = |H〉〈H | − |V 〉〈V | is the linear polarization observ-
able, Â generates shifts of the temporal Gaussian wave packet,
and τ̃ = τ/τG plays the role of an interaction strength.

After passing through the birefringent material and subse-
quent projection onto |ψ0〉, the (un-normalized) photon state
is

|�1〉 = |ψ0〉〈ψ0| exp

[
−i

τ̃

2
Ô ⊗ Â

]
|ψ0〉|φ(0)〉. (8)

Since the interaction is weak, we can expand to second order
in τ̃ [6]:

〈ψ0| exp

[
−i

τ̃

2
Ô ⊗ Â

]
|ψ0〉

= 1 − i
τ̃

2
〈Ô〉Â − 1

2

(
τ̃

2

)2

〈Ô〉2Â2 − 1

2

(
τ̃

2

)2

�O2Â2, (9)

where 〈Ô〉 = 〈ψ0|Ô|ψ0〉 = cos 2θ and �O2 = 〈Ô2〉 − 〈Ô〉2 is
the square of the uncertainty in Ô. Reintroducing the exponen-
tial function (and again working to second order in τ̃ ) gives
[6]

〈ψ0| exp

[
−i

τ̃

2
Ô ⊗ Â

]
|ψ0〉

= exp

[
−i

τ̃

2
〈Ô〉Â

][
1 − 1

2

(
τ̃

2

)2

�O2Â2

]
. (10)

After 
 Zeno stages, the final state is therefore of the form

|�
〉 = |ψ0〉
[

1 − 1

2

(
τ̃

2

)2

�O2Â2

]


× exp

[
−i


τ̃

2
〈Ô〉Â

]
|φ(0)〉

= |ψ0〉
[

1 − 1

2

(
τ̃

2

)2

�O2Â2

]


|φ(
τ̃ 〈Ô〉/2)〉. (11)

We see that the temporal shift of the pulse wave packet is equal
to 
τ̃ 〈Ô〉/2. Thus, the birefringent material delays the arrival
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TABLE I. Photon-survival probability P [Eq. (12)] and accu-
mulated pointer shift for different input states |ψ0〉 = cos θ |H〉 +
sin θ |V 〉 as a function of the measurement strength τ̃ and the number

 of passes (projections). The value τ̃ = 1 corresponds to a strong
measurement that completely resolves the H and V components in a
single pass. The last column represents the expectation value of the
polarization observable Ô = |H〉〈H | − |V 〉〈V |.

θ τ̃ 
 P Pointer shift 〈O〉
0.2 π

4 0.1 10 0.994 0.951 0.951
0.2 5 0.988 0.952
0.5 2 0.972 0.961

0.8 π

4 0.1 10 0.946 0.310 0.310
0.2 5 0.894 0.313
0.5 2 0.753 0.353

1.5 π

4 0.1 10 0.967 −0.708 −0.707
0.2 5 0.940 −0.712
0.5 2 0.859 −0.757

of the photon by �t = 
 L
c − 
(tavg − τ

2 〈Ô〉). By measuring
this delay, we can measure 〈Ô〉.

The probability for the photon to survive the projections is
determined by the overlap of the temporal wave packets (the
bigger the overlap is, the higher the survival probability is),
which is related to the ratio τ̃ = τ/τG (a small τ̃ implies a
large overlap). By decreasing the temporal shift induced by
a single pass through the birefringent material (i.e., by de-
creasing τ̃ ), the probability of the photon reaching the output
after 
 stages can be increased. Doing so, however, will also
decrease the total shift at the output, leading to greater uncer-
tainty in the measured expectation value. To compensate, one
may increase 
. Specifically, by increasing 
 while propor-
tionally decreasing τ̃ (i.e., keeping 
τ̃ constant to maintain a
fixed amount of total pointer shift and therefore measurement
resolution), the survival probability can be made arbitrarily
close to unity (see also Ref. [23]). It is important to note that
while increasing 
 (while keeping the measurement strength
constant) will decrease the photon survival probability, the
decrease grows very slowly with 
, much slower than the
decrease in uncertainty [12].

We shall give a few explicit values for the photon survival
probability after 
 passes. This probability is given by

P = Tr

[(

∏

i=1

|ψ0〉〈ψ0|Û (τ̃ )

)
[|ψ0〉〈ψ0| ⊗ |φ(0)〉〈φ(0)|]

]
,

(12)

where Û (τ̃ ) is the evolution operator (7). Table I shows
survival probabilities that were numerically calculated from
Eq. (12) for different polarization states and measurement
strengths τ̃ . We chose the number 
 of passes such that

τ̃ = 1, so that the pointer shift falls within the range [−1, 1].
We also compare the pointer shift with the expectation value
of the polarization observable, i.e., with the value we would
like to obtain from the pointer shift. The results show that
already for 
 = 5 passes we get high survival probabilities and
excellent agreement between the pointer shift and expectation
value. For 
 = 10, the survival probabilities are > 94%.

FIG. 2. The experimental apparatus for a single Zeno stage of
the protective measurement. Abbreviations: circulator (C), linear
polarizer (LP), polarization controller (PC), differential group delay
(DGD), and polarization stabilizer (PS). The circulators multiplex
and demultiplex beams traveling in opposite directions. Individual
photons travel right to left, while the stabilization beam travels left
to right.

Note that these probabilities are obtained solely from the
probability of a photon surviving the multiple projections.
Of course, in practice, additional losses will come from the
fiber-optic elements in the loop. In our experiment, these
losses are ∼10 dB (90%) per loop, substantially larger than
the losses due to the projections.

III. EXPERIMENT

A. Experimental apparatus

The experimental apparatus used for a single Zeno stage is
shown in Fig. 2. For a PM to succeed, as described above, after
the system interacts weakly with the apparatus, it is necessary
to project back onto the initially prepared state. To accom-
plish this we use a commercial polarization stabilizer (Luna
POS-002).

All of the light in our experiments is derived from a
1540-nm laser, and it propagates through single-mode optical
fibers. We use circulators to multiplex and demultiplex beams
that propagate in opposite directions. In Fig. 2 the single-
photon-level signal beam propagates from right to left, while
a continuous-wave (cw) laser beam travels from left to right.
First, we consider the single-photon-level beam that travels
from right to left. It passes through a circulator, then a linear
polarizer (LP) that projects onto |H〉. A manual polarization
controller (PC; three loops of fiber that can be rotated) can be
configured to create any state of polarization by implementing
a unitary transformation Û0. The combination of the LP and
the PC prepares the state |ψ0〉 = Û0|H〉. The photons then
pass through the DGD, which imparts 0.5 ns of DGD between
the fast (|V 〉) and slow (|H〉) axes of the fiber. However, the
DGD also shifts the relative phase of the |H〉 and |V 〉 states,
affecting the polarization state as well. This state change
is described by the unitary transformation ÛD. The DGD
is implemented by a long (∼250 m) length of birefringent
fiber, and the phase shift it imparts is extremely sensitive to
environmental conditions. We passively stabilize the phase
shift by temperature stabilizing this fiber to less than 0.02 ◦C,
but despite this, the phase drifts slowly in time, necessitating
active stabilization.

The photons pass through a polarization stabilizer (PS)
before passing through a second linear polarizer that projects
onto |H〉 and a second circulator. The PS implements the
unitary transformation (ÛDÛ0)

†
. The total transformation
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between the linear polarizers is thus equal to the identity, so
photons that are transmitted by the first polarizer will also be
transmitted by the second. This means that the combination
of the PS and the second linear polarizer effectively undoes
the phase shift induced by the DGD and then projects back
onto the initial state |ψ0〉, as illustrated in Fig. 2. The PS
implements the proper transformation via feedback derived
from the cw beam that propagates between the polarizers in
the opposite direction of the single-photon-level field. The PS
automatically adjusts the phase shift to maximize the intensity
of the cw beam transmitted by the second polarizer, guaran-
teeing that the total polarization transformation between the
polarizers is equal to the identity operation. We note that there
are also losses in the components between the polarizers,
but as long as these losses are not polarization dependent,
they affect the overall transmission and do not affect the
polarization transformations. We have chosen components
with an eye toward minimizing polarization-dependent losses
and are unable to observe any such losses in our experiments.

To characterize the performance of our PS, we can insert
a beam splitter between the PC and the LP in Fig. 2 and
pick off a small portion of the stabilization beam to send to
a polarization analyzer. (This beam splitter is present only
during characterization, not during our PM experiments.) We
find that when the PS is on, the Stokes vector that describes the
classical polarization has an approximately Gaussian distribu-
tion if it is expressed as a point on the Poincaré sphere. When
the polarization is nearly linear (located near the equator of
the Poincaré sphere), the angular spread in this distribution is
found to have a standard deviation of 0.08 rad. It is reasonable
to assume that the difference between the Bloch vectors that
describe the prepared quantum polarization state and the po-
larization state that is projected onto is described by this same
distribution. Two polarization states whose Bloch vectors dif-
fer by 0.08 rad have a fidelity of 0.998, and we believe this
is a good estimate of the fidelity between our prepared and
projected states.

The transformation Û0, which produces the state |ψ0〉 we
are measuring, is stable in time. It is the transformation ÛD

imparted by the lengthy DGD line that is random (indeed, it
varies randomly in time). The PS implements the transforma-
tion (ÛDÛ0)

†
, and this information is, in principle, available

to the experimenter. However, there is no way to separate
the contributions from ÛD and Û0, so the experimenter gains
no information about Û0. The polarization stabilization thus
guarantees that the state |ψ0〉 is protected but yields no infor-
mation, even in principle, about what that state is.

Despite that fact that the classical stabilization beam yields
no information about |ψ0〉, information about this state is
retained in the counterpropagating, single-photon-level beam,
and this is why our PM is possible. The transformation Û0

produces the state |ψ0〉 at the input of the DGD. It is the state
at this location that is protected, as described above. It is this
state that experiences the temporal delay that we measure in
our experiment. The phase shift in the DGD does not affect
the relative time delay between the |H〉 and |V 〉 components of
the single-photon-level pulse. The PS ensures that the relative
phase of these components is adjusted so that they properly
interfere at the final LP, projecting onto |ψ0〉.

FIG. 3. The complete experimental apparatus. Abbreviations:
erbium-doped fiber amplifier (EDFA), bandpass filter (F), circulator
(C), linear polarizer (LP), polarization controller (PC), differential
group delay (DGD), polarization stabilizer (PS), variable attenuator
(AT), and single-photon counting module (SPCM). A 90%:10%
splitter is denoted by 90:10. Amplitude modulators are shown as
1 × 1 switches, and a 2 × 2 switch directs light into and out of a
fiber loop containing the single-Zeno-stage apparatus (Fig. 2).

A related point is that the PS affects only the relative
phase of the two polarization components, but the operator
Ô = |H〉〈H | − |V 〉〈V | that we are performing a PM of (the
same operator that was measured in the previous PM exper-
iment [12]) is not sensitive to this phase. It is the relative
amplitudes of |H〉 and |V 〉 at the input to the DGD that the
measurement is sensitive to. We would need to redesign our
apparatus to measure a different polarization operator, which
would be experimentally feasible, in order for it to be sensitive
to the relative phase.

Our complete experimental apparatus is shown in Fig. 3.
Ninety percent of the light from a cw, 1540-nm laser passes
through an amplitude modulator (1 × 1 switch), which slices
out a 3-ns-long pulse. The pulse repetition rate is 50 kHz.
The pulse is amplified by up to 20 dB in an erbium-doped
fiber amplifier and filtered by a 100-GHz bandpass filter to
eliminate amplified spontaneous emission. The pulse then
passes through two more 1 × 1 switches in order to further
decrease cw background light. A 2 × 2 switch directs the
pulse into a fiber loop, where it propagates in the coun-
terclockwise direction. The timing of the switch is set to
allow the pulse to travel a predetermined number of times
around the loop before being switched out. Inside the loop
the pulse traverses the single-Zeno-stage apparatus (Fig. 2)
before once again reaching the 2 × 2 switch. After the pulse
is switched out, it is attenuated to the single-photon level
(<0.1 photon per pulse) before being detected with a single-
photon counting module (SPCM) with a temporal resolution
of 100 ps; the SPCM is gated on for a 15-ns window sur-
rounding the arrival of the pulse. Photon arrival times are
measured with a time-to-digital converter with a temporal
resolution of 20 ps.

Because the pulses travel around a loop, the LP-PC combi-
nation that produces the initial state |ψ0〉 is the same for each
iteration of the PM. Thus, to high precision, this state is the
same for each iteration.

B. Data acquisition and analysis

For each data run, we fix the polarization of photons
incident on the DGD using the PC and set the timing of
the 2 × 2 switch to realize the desired number 
 of loops
(see Fig. 3). For each polarization setting and each 
, we
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acquire data as follows. For one to six loops we acquire
∼750 000 total (signal and background) counts, and this
takes about 150 s . Above six loops the count rate drops,
and the signal-to-background ratio becomes smaller, so we
acquire more data in order to have sufficient signal counts.
For nine loops we acquire ∼3 500 000 total counts, which
takes about 9000 s . The time-tagged photon counts are sorted
into histograms, with bins denoted by measured arrival time.
To acquire the background, we change the timing to move the
pulse out of the recorded time window. Background counts
are acquired for between 150 and 900 s, depending on the
count rate, and histogrammed using the same bins as for the
signal. For each data set we calculate the total number of
counts in a 2–4-ns window away from the peak in the set,
where we have only background counts. We then calculate
the total number of counts in the same window for the
corresponding background data set. We scale the background
data so that they have the same number of counts in that
window as the data and then subtract the background. We
have found that this background subtraction procedure works
better for subtracting some small structure in the background
(likely due to the behavior of the 2 × 2 switch) than simply
subtracting a constant, average background.

To further reduce the effect of background when cal-
culating the statistics of the arrival times, we truncate the
histograms to remove data in arrival-time bins that are away
from the peak of the histogram and contain only background.
Starting from the histogram peak, we move to shorter (longer)
times and locate the first time at which the background-
subtracted histogram has a negative value. We truncate the
histogram at this point, removing all data corresponding to
this and shorter (longer) arrival times. The histograms now
contain only positive values, and we normalize them to obtain
estimates of the probability Pi for a photon to arrive in time bin
ti. Our truncation procedure eliminates nonphysical negative
probabilities in a consistent manner while ensuring that the
relevant probabilities are preserved.

To set the timescale for a given 
, the mean of the distri-
bution for photons polarized along the fast axis of the DGD is
used to define the zero of the scale, and arrival times for other
polarization settings P are expressed in terms of the relative
delay τ (P ) = t̄ar(P ) − t̄ar(V ), where t̄ar(V ) is the mean arrival
time for photons polarized along the fast axis.

IV. RESULTS

A. Arrival times as a function of the number of Zeno stages

Figure 4 shows probabilities of measured photon arrival
times for different numbers of loops and for two polarization
settings: polarization along the fast axis of the DGD and
polarization along the slow axis. The relative shift of the
center of the photon distribution is clearly seen. The data
for one loop verify the weak-measurement regime: The shift
of the distribution is much smaller than the width. Figure 5
shows measured values for the maximum shift τmax, set by
the mean arrival time t̄ar(H ) for photons polarized along the
slow axis of the DGD, as a function of the number of loops.
A linear relationship is observed, and the slope is found to be
0.483 ± 0.001 ns/loop, which we use as a calibration for our
polarization measurements.

FIG. 4. Probabilities of photon arrival times after (a) one loop,
(b) five loops, and (c) nine loops for polarization along the fast
(orange circles) and slow (blue squares) axes. Vertical lines represent
mean arrival times. The fast-axis polarization is defined to have a
mean arrival time of 0, while the mean arrival time of the slow-axis
polarization is (a) 0.49 ns, (b) 2.43 ns, and (c) 4.33 ns .

B. Measuring photon polarization

Figure 6 shows the measured arrival times of photons af-
ter eight loops for five different polarization angles θ . Here,
starting from polarization along the fast axis of the DGD, we
used the PC (Fig. 3) to rotate the polarization entering the
DGD in steps [24] , until we reached the setting in which

FIG. 5. The circles are measured differences τmax in mean arrival
times between photons polarized along the slow and fast axes of
the DGD, plotted as a function of the number of loops. Error bars,
corresponding to the standard deviation of the mean, are smaller than
the circles. The line is a linear fit to the data that is constrained to pass
through the origin.
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FIG. 6. Probabilities of photon arrival times after eight loops.
Each curve corresponds to a different polarization. Orange circles
(a) correspond to polarization along the fast axis of the DGD, blue
squares (e) correspond to polarization along the slow axis, and curves
(b)–(d) are polarizations along intermediate angles. The dashed lines
correspond to the mean arrival time for each polarization (given in
Table II).

the photons were polarized along the slow axis. We observe
the expected behavior for the PM: The temporal shift consis-
tently increases as the polarization is rotated from the fast axis
to the slow axis, and this shift is therefore indicative of the
expectation value of polarization 〈O〉. (We note that because
our experiment did not allow us to independently measure
the prepared polarization with any degree of confidence, we
cannot compare 〈O〉 as obtained from the PM shift to 〈O〉 as
predicted by the input state.) Measured delays are shown in
Table II, together with values of 〈O〉 calculated from these
delays by rescaling the delay to the interval [−1, 1]: 〈O〉 =
2 τ

τmax
− 1, where τmax = (3.864 ± 0.008) ns is the expected

delay for polarization along the slow axis of the DGD after
eight loops.

C. Measurement uncertainties

It is natural to ask to what extent a Zeno protective
measurement may offer advantages (whether practical or
fundamental) over a standard strong measurement for de-
termining expectation values. The task of providing a fair
comparison is far from straightforward. First, the exper-
imental arrangements are rather different for these two
measurement schemes. The prototypical arrangement for a
strong measurement may simply consist of a polarizing beam
splitter with a pair of single-photon detectors placed at the two
output ports, such that the expectation value can be obtained
from the measured photon counts NH and NV at those ports via
〈Ô〉 = (NH − NV )/(NH + NV ). A protective-measurement ex-
periment such as ours or that of Piacentini et al. [12] requires
significantly more components than an SM. For example, our
experiment uses a 2 × 2 switch and a polarization stabilizer,
while the experiment of Piacentini et al. requires multiple
measurement-and-protection stages and a two-dimensional
single-photon-detection array. Thus, it is clear that the amount
of required experimental resources differs greatly between the
SM and PM.

TABLE II. Data for the arrival time distributions labeled (a)–(e)
in Fig. 6. Shown are (i) measured delays τ relative to the zero defined
by the mean arrival time for photons polarized along the fast axis,
with uncertainties given by the standard deviation; (ii) corresponding
expectation values 〈O〉 of linear polarization; (iii) uncertainties σPM

for the PM obtained from the uncertainties in the arrival times τ ,
rescaled to the range [−1, 1] of the expectation value; (iv) uncer-
tainties σSM for the strong measurement obtained from Eq. (13);
and (v) relative measurement performance R = σSM

σPM
[see Eq. (14)],

assuming the same number of detected photons in both the strong
and protective measurements.

Distribution τ (ns) 〈O〉 σPM σSM R

(a) (orange circles) 0.00 ± 0.79 −1.00 0.41 0 0
(b) (red diamonds) 1.07 ± 0.87 −0.45 0.45 0.89 2.0
(c) (black asterisks) 2.07 ± 0.89 0.07 0.46 1.00 2.2
(d) (brown triangles) 3.04 ± 0.85 0.57 0.44 0.82 1.9
(e) (blue squares) 3.87 ± 0.81 1.00 0.42 0 0

Another resource-based argument that one may consider
concerns the required amount of a priori information about
the photon state for the measurement scheme to work. While
for the SM no such information is needed, it may seem
that in order to implement the protection, we must have
information about the initial photon state since we need to
ensure projection onto this initial state at each protection
stage. This is arguably indeed the case in the experiment
by Piacentini et al. [12] since there both preparation and
protection are realized through a series of physically sepa-
rate polarizers, which must be manually dialed to the same
setting. Therefore, the prepared (and subsequently protected)
state is effectively known to the experimenter. In our exper-
iment, however, the situation is different. As described in
Sec. III A, not only do we not know what the prepared and
protected state is, but the particular experimental arrangement
we use also ensures that we cannot know this state, even in
principle.

An additional important consideration in comparing pro-
tective and strong measurements is the issue of intrinsic
photon loss. In an ideal SM where optical imperfections can
be neglected, there is no such loss: Every photon entering the
beam splitter will also be detected. In the Zeno PM, however,
there is a fundamental photon loss even in the absence of
optical imperfections because the probability of a photon sur-
viving the protection stage is less than 1. Previous studies of
the performance advantage of protective measurements [12]
focused on the fact that this intrinsic loss is small (see the
estimates given in Sec. II) and that even when taking these
intrinsic losses into account, the uncertainty in the expectation
value obtained from the PM is smaller than for the SM for the
same number of initial photons.

In a practical setting such as ours, however, such intrinsic
losses are drowned out by the losses from the fiber-optic
elements in the loop. As stated in Sec. II, in our experiment
these losses are ∼10 dB (90%) per loop. Thus, if we compared
the PM to the SM for the same number of initial photons, the
uncertainty of the PM would be far greater simply because
the number of detected photons would be so much smaller
than in the SM. Alternatively, we may therefore choose to
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provide a comparison between the PM and SM for the same
number of detected photons. Such a comparison can be jus-
tified by noting that the fiber-optic losses in our experiment
are merely practical constraints that may be overcome with
an improved experimental implementation. In principle, then,
only the intrinsic losses will be left and, as already mentioned,
are small enough that they do not significantly influence the
photon numbers.

A final difference between the PM and SM concerns the
source of the uncertainty in the measured expectation value.
In the PM, the pointer shifts deterministically, and the un-
certainty is due to the measured width of the pointer wave
packet. We can therefore estimate this uncertainty from the
standard deviation σPM of the distribution Pi of arrival times
(Table II) for a given polarization state and number of loops.
While making the pointer wave packet narrower will decrease
this uncertainty, there is a trade-off involved because doing so
will also make the measurement less weak since the overlap
between the pre- and postmeasurement wave packets will
become smaller.

In an ideal PM, the measurement interaction shifts the
pointer without changing the pointer wave packet, and the
arrival-time distributions in Figs. 4 and 6 show that this is
true to a good approximation also in our experiment. The
measured widths σPM are similar to the width of the pre-
measurement wave packet and are largely independent of the
expectation value 〈O〉.

In an SM, the wave packets corresponding to orthog-
onal polarizations become fully separated, and thus, their
width and shape are irrelevant. Instead, the uncertainty in the
expectation value is now due to the fundamental quantum
uncertainty of |ψ0〉,

σSM =
√

〈Ô2〉–〈Ô〉2 =
√

1–〈Ô〉2 = |sin(2θ )|, (13)

associated with the standard deviation of the linear polar-
ization for the observable Ô = |H〉〈H | − |V 〉〈V | in the state
|ψ0〉. Using Eq. (13), we can estimate σSM from the measured
expectation values (Table II).

Since we use a PS to perform the PM, it is worth consider-
ing whether such a stabilizer would improve the performance
of an SM. Indeed, such a stabilizer would, in principle, trans-
mit all of the photons through one of the output ports of the
polarizing beam splitter performing the SM, and the uncer-
tainty in the measurement would then be zero. If there are no
random phase fluctuations added to the prepared state, reading
out the transformation induced by the PS would determine
〈Ô〉 with little or no uncertainty. However, if there is some
source of random phase fluctuations that disturb the initial
state, as described above in Sec. III A, it is not possible to
separate this randomness from the state preparation. In this
case the SM yields absolutely no information about 〈Ô〉 (the
SM has no uncertainty, but there is no available information
about what polarization states are actually being measured by
the detectors), so the PM is clearly superior if there is added
phase noise.

To compare the PM and SM uncertainties, we shall here
take the aforementioned approach of considering the same
number of detected (rather than initial) photons for both
measurement schemes. That is, we scale both the values

σPM and σSM by 1/
√

N for N recorded photons to get the
standard deviation of the mean, uPM = σPM/

√
N and uSM =

σSM/
√

N . Adopting the approach of Ref. [12], we can then
assess the measurement performance of the PM relative to
the SM as the ratio of the uncertainties for each measurement
scheme, i.e.,

R = uSM

uPM
= σSM

σPM
=

√
1–〈Ô〉2

σPM
. (14)

Results are shown in Table II. If R > 1, then the PM provides
a lower uncertainty estimate of the expectation value than the
SM, given the same number of detected photons for both mea-
surements. Table II shows this is the case for all input states
used in our experiment except the “extreme” states polarized
nearly entirely along the fast or slow axes of the DGD. Of
course, for the reasons discussed above, such an observation
does not imply the conclusion that our experiment provides a
method for measuring expectation values that is superior to an
SM. The experimental resources and the optical losses (which
are here effectively ignored by considering only the number of
detected photons) for the PM are simply far too great to allow
for a fair comparison.

As discussed in Sec. II, since the uncertainty of the PM is
related to the temporal width of the photon wave packet, it
may be reduced by decreasing this width. However, the width
must be kept longer than the amount of DGD per loop to
remain in the weak-measurement regime. For a fixed ratio of
DGD to pulse width and for a sufficient signal-to-noise ratio
(SNR), the performance of the PM increases with the number
of loops and is essentially independent of other factors. In
our experiment, we are limited to nine loops because of two
issues: background and loss. Our high loss rate of ∼10 dB
per loop (due primarily to losses in the 2 × 2 switch, the
circulators, and the polarizers) means that not many photons
survive large numbers of loops. After eight loops our SNR
(defined as the ratio of the number of counts in the peak of
the histogram to the number of counts in the background) is
∼20, whereas after nine loops it is ∼2. Background photons
come from cw light that makes it through the 1 × 1 switches
(due to finite contrast of those switches) and from the cw
light used to stabilize the polarization. It may be possible to
find another way to stabilize the polarization without using
cw light, and this would eliminate a source of background,
as well as eliminate the need for the circulators. It may also
be possible to find lower-loss polarizers and switches. This
would allow us to increase the number of loops and improve
the performance of our measurements.

V. CONCLUDING DISCUSSION

We have demonstrated an experimental implementation of
a protective measurement based on the quantum Zeno effect.
Our approach is different in two ways: We use a temporal
pointer in the form of polarization-dependent photon arrival
times, and we implement a loop configuration in which we
let the photon repeatedly cycle through a Zeno stage for up to
nine stages. This approach offers enhanced flexibility because
the number of stages can be adjusted easily without having to
physically modify the arrangement of the optical elements.

022420-7



CHEN, YOUNG, SCHLOSSHAUER, AND BECK PHYSICAL REVIEW A 108, 022420 (2023)

We have experimentally confirmed the theoretically ex-
pected behavior for a PM, namely, that the pointer wave
packet (represented by the distribution of recorded photon
arrival times) shifts proportionally to the number of loops
(Figs. 4 and 5) and that for a given number of loops this
shift changes in response to changes in the polarization state
(Fig. 6).

A noteworthy feature of our experiment is the fact that no
knowledge of the initial polarization state of the photon is
required to realize the state protection, which is implemented
using a polarization stabilizer. Moreover, not only do we not
need to know the state in order to protect it, but indeed, it is
fundamentally impossible in our experiment for the experi-
menter to know what the state is. Thus, while on the surface

it may appear as though one would always need to know what
the state is in order to protect it, our experiment shows that
this is not so. Because no state information is available, the ex-
pectation values measured in the Zeno PM indeed yield fresh
information.

ACKNOWLEDGMENTS

We thank J. Ewing for help with construction of the ex-
perimental apparatus. This work was funded by the National
Science Foundation (Grant No. PHY-2109964/2109962).
M.-W.C. acknowledges support from the Gordon and Betty
Moore Foundation.

[1] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the Result of a
Measurement of a Component of the Spin of a Spin-1/2 Particle
Can Turn Out to Be 100, Phys. Rev. Lett. 60, 1351 (1988).

[2] B. Tamir and E. Cohen, Introduction to weak measurements and
weak values, Quanta 2, 7 (2013).

[3] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W.
Boyd, Colloquium: Understanding quantum weak values: Ba-
sics and applications, Rev. Mod. Phys. 86, 307 (2014).

[4] D. R. M. Arvidsson-Shukur, N. Yunger Halpern, H. V. Lepage,
A. A. Lasek, C. H. W. Barnes, and S. Lloyd, Quantum advan-
tage in postselected metrology, Nat. Commun. 11, 3775 (2020).

[5] Y. Aharonov and L. Vaidman, Measurement of the Schrödinger
wave of a single particle, Phys. Lett. A 178, 38 (1993).

[6] Y. Aharonov, J. Anandan, and L. Vaidman, Meaning of the wave
function, Phys. Rev. A 47, 4616 (1993).

[7] J. Anandan, Protective measurement and quantum reality,
Found. Phys. Lett. 6, 503 (1993).

[8] N. D. Hari Dass and T. Qureshi, Critique of protective measure-
ments, Phys. Rev. A 59, 2590 (1999).

[9] L. Vaidman, Protective measurements, in Compendium of
Quantum Physics: Concepts, Experiments, History and Philos-
ophy, edited by D. Greenberger, K. Hentschel, and F. Weinert
(Springer, Berlin, 2009), pp. 505–508.

[10] Protective Measurement and Quantum Reality: Towards a New
Understanding of Quantum Mechanics, edited by S. Gao (Cam-
bridge University Press, Cambridge, 2014).

[11] M. Genovese, A few reflections on protective measurements
and more, J. Phys.: Conf. Ser. 880, 012012 (2017).

[12] F. Piacentini, A. Avella, E. Rebufello, R. Lussana, F. Villa,
A. Tosi, M. Gramegna, G. Brida, E. Cohen, L. Vaidman, I. P.
Degiovanni, and M. Genovese, Determining the quantum ex-
pectation value by measuring a single photon, Nat. Phys. 13,
1191 (2017).

[13] E. Rebufello, F. Piacentini, A. Avella, R. Lussana, F. Villa,
A. Tosi, M. Gramegna, G. Brida, E. Cohen, L. Vaidman, I. P.
Degiovanni, and M. Genovese, Protective measurement—A
new quantum measurement paradigm: Detailed description of
the first realization, Appl. Sci. 11, 4260 (2021).

[14] D.-J. Zhang and J. Gong, Dissipative adiabatic measurements:
Beating the quantum Cramér-Rao bound, Phys. Rev. Res. 2,
023418 (2020).

[15] B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quan-
tum theory, J. Math. Phys. 18, 756 (1977).

[16] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,
Quantum Zeno effect, Phys. Rev. A 41, 2295 (1990).

[17] D. Home and M. Whitaker, A conceptual analysis of quantum
Zeno; paradox, measurement, and experiment, Ann. Phys. (NY)
258, 237 (1997).

[18] S. Virzì, A. Avella, F. Piacentini, M. Gramegna, T. Opatrný,
A. G. Kofman, G. Kurizki, S. Gherardini, F. Caruso, I. P.
Degiovanni, and M. Genovese, Quantum Zeno and Anti-Zeno
Probes of Noise Correlations in Photon Polarization, Phys. Rev.
Lett. 129, 030401 (2022).

[19] M. Schlosshauer, Scheme for the protective measurement of a
single photon using a tunable quantum Zeno effect, Phys. Rev.
A 97, 042104 (2018).

[20] N. Brunner, A. Acín, D. Collins, N. Gisin, and V. Scarani,
Optical Telecom Networks as Weak Quantum Measurements
with Postselection, Phys. Rev. Lett. 91, 180402 (2003).

[21] N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin,
Direct Measurement of Superluminal Group Velocity and Sig-
nal Velocity in an Optical Fiber, Phys. Rev. Lett. 93, 203902
(2004).

[22] Q. Wang, F.-W. Sun, Y.-S. Zhang, Jian-Li, Y.-F. Huang, and
G.-C. Guo, Experimental demonstration of a method to realize
weak measurement of the arrival time of a single photon, Phys.
Rev. A 73, 023814 (2006).

[23] F. Piacentini, A. Avella, M. Gramegna, R. Lussana, F. Villa, A.
Tosi, G. Brida, I. P. Degiovanni, and M. Genovese, Investigating
the effects of the interaction intensity in a weak measurement,
Sci. Rep. 8, 6959 (2018).

[24] The center “paddle” in our three-paddle manual PC behaves
approximately as a half-wave plate and therefore rotates the
angle θ in the prepared polarization state. Minor adjustments
of the other paddles are used to align the polarization along the
fast and slow axes of the DGD.

022420-8

https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.12743/quanta.v2i1.14
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1038/s41467-020-17559-w
https://doi.org/10.1016/0375-9601(93)90724-E
https://doi.org/10.1103/PhysRevA.47.4616
https://doi.org/10.1007/BF00662803
https://doi.org/10.1103/PhysRevA.59.2590
https://doi.org/10.1088/1742-6596/880/1/012012
https://doi.org/10.1038/nphys4223
https://doi.org/10.3390/app11094260
https://doi.org/10.1103/PhysRevResearch.2.023418
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1006/aphy.1997.5699
https://doi.org/10.1103/PhysRevLett.129.030401
https://doi.org/10.1103/PhysRevA.97.042104
https://doi.org/10.1103/PhysRevLett.91.180402
https://doi.org/10.1103/PhysRevLett.93.203902
https://doi.org/10.1103/PhysRevA.73.023814
https://doi.org/10.1038/s41598-018-25156-7

