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Performance advantage of protective quantum measurements
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We compare the performance of protective quantum measurements to that of standard projective measure-
ments. Performance is quantified in terms of the uncertainty in the measured expectation value. We derive
an expression for the relative performance of these two types of quantum measurements and show explic-
itly that protective measurements can provide a significant performance advantage over standard projective
measurements.
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I. INTRODUCTION

It is a fundamental tenet of quantum mechanics that mea-
surements will, in general, change the state of the measured
system. This may be rigorously quantified in terms of a trade-
off between information gain and disturbance [1]. Protective
quantum measurements [2–11] are noteworthy in this context
because they can provide information about expectation val-
ues while leaving the state of the measured quantum system
(approximately or exactly) unchanged. This is accomplished
by combining a weak system–apparatus coupling with an
appropriate state-protection procedure. The state protection
is based either on the adiabatic theorem [2] or on the quan-
tum Zeno effect [3,12–15]. In the latter approach, which we
shall refer to as a Zeno protective measurement from here
on, the system is subjected to a sequence of repeated steps
consisting of a weak system–apparatus interaction followed
by a projection onto the initial (premeasurement) state. In
what follows, we will refer to each such step as a Zeno stage.
Experimental realizations of Zeno protective measurements
using photons, with up to nine Zeno stages, have been reported
in Refs. [9–11].

In a Zeno protective measurement, the pointer wave packet
shifts deterministically by an amount proportional to the ex-
pectation value. This means that the expectation value can
be directly read off from the pointer shift, rather than hav-
ing to be reconstructed as a statistical average over many
projective (strong) measurements on an ensemble. While
the relevance of protective measurements to foundational is-
sues such as the question of the ontological status of the
quantum state is a subject of ongoing debate [5,16–25], pro-
tective measurements may offer practical advantages over
other types of quantum measurements (such as projective
measurements on an ensemble) for determining expectation
values. Indeed, the existence of a performance advantage of
this kind was described in Ref. [9], where the uncertainty in
the protectively measured expectation value was reported to
be typically smaller than the uncertainty in the expectation
value obtained from projective measurements, given compara-
ble resources in both measurement schemes. Using the same
performance quantifier (albeit with a modification to buffer
the effect of large fiber-optic losses), the advantage was also

experimentally observed in Ref. [11]. While Ref. [9] gave
some partial mathematical results, the performance advantage
was reported only in graphical form and no complete analyti-
cal calculations or closed-form results were provided.

In the present paper, we close this gap. We adapt the exact
solution of the system–apparatus evolution for a Zeno protec-
tive measurement given in Ref. [24] (where it was presented
with the different aim of challenging claims regarding the
ability of protective measurements to suggest the reality of
the quantum state) to derive analytical expressions for the
performance advantage provided by protective measurements.
We focus on Zeno protective measurements in this paper, as
it is the type of protective measurement that has been studied
most extensively and is also the only version of a protective
measurement for which experimental realizations have been
reported [9–11].

This paper is organized as follows. In Sec. II, we define
the measurement model and present the relevant results for
the quantum-state evolution for this model. In Sec. III, we
use these results to derive an expression for the performance
quantifier and analyze the resulting performance advantage of
protective measurements. We discuss our findings in Sec. IV.

II. MODEL AND STATE EVOLUTION

A. Zeno measurement model

We consider a two-outcome observable Ô = �̂+ − �̂−
with eigenstates |±〉. An experimentally relevant example
would be the linear polarization observable Ô = |H〉〈H | −
|V 〉〈V | used in the protective-measurement experiments re-
ported in Refs. [9–11]. Let the interaction Hamiltonian be
Ĥint = gÔ ⊗ P̂, where g is the coupling strength and P̂ is
the operator that generates the translation of the apparatus
pointer in the conjugate variable Q̂ with eigenstates {|Q〉}.
The pointer variable Q̂ may correspond to spatial position,
but it may also represent other quantities, such as the photon
arrival time used in the experiment in Ref. [11]. We take the
total measurement time T (consisting of all Zeno stages) to be
fixed and divide it into N Zeno stages of duration �t , so that
T = N�t . It is customary to relate the measurement strength
g to T via g = 1/T in order to obtain a pointer shift that is
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normalized to the interval [−1, 1] and that is independent of
the number of stages. In this case, the extremal pointer-shift
values −1 and +1 correspond to the measured system being
in the eigenstates |−〉 and |+〉 of �̂− and �̂+, respectively.

The measurement is weak when the shift per Zeno stage
is small compared with the width σ of the apparatus pointer
wave packet in the variable Q̂. Since the shift per stage is on
the order of 1/N , the weak-measurement regime corresponds
to 1/N � σ . Clearly, enlarging σ or N will both make the
measurement weaker. This also provides a method for a rea-
sonable choice of σ for a given number of stages.

Let |ψ〉 = √
r|+〉 + √

1 − r|−〉 be the initial state of the
system that is to be protected. (Given that the relative phase
between the two state components is not accessible in a mea-
surement of the observable Ô = �̂+ − �̂−, we can disregard
it here.) Then each Zeno stage consists of a unitary system–
apparatus coupling Û acting over a time �t ,

Û = exp(−iĤint�t ) = exp

[
− i

N
(�̂+ − �̂−) ⊗ P̂

]
, (1)

followed by a projection �̂ψ = |ψ〉〈ψ | onto the initial state.
Let |�〉 be the initial state of the apparatus pointer. Then the
final combined system–pointer state at the end of N Zeno
stages, using the Q̂ representation for the pointer state, is

〈Q|(�̂ψÛ )N |ψ〉|�〉 = |ψ〉〈Q|(〈ψ |Û |ψ〉)N |�〉. (2)

B. Exact system–apparatus evolution

The expression (2) for the system–apparatus evolution can
be evaluated explicitly. The result was quoted in Ref. [9], with
some of the calculational steps provided in Ref. [24] for the
general case of a state protection that does not necessarily
project on the initial state. For completeness, here we will
present the calculational steps for the case relevant to our
analysis when the prepared and protected states are the same.

First, we rewrite the evolution operator Û , Eq. (1), as an
infinite series,

Û =
∞∑

n=0

(
− i

N

)n (�̂+ − �̂−)n ⊗ P̂n

n!

= �̂+ ⊗
( ∞∑

n=0

(
− i

N

)n P̂n

n!

)
+ �̂− ⊗

( ∞∑
n=0

(
i

N

)n P̂n

n!

)

= �̂+ ⊗ exp

[
− i

N
P̂

]
+ �̂− ⊗ exp

[
+ i

N
P̂

]
, (3)

where we have used that (�̂+ − �̂−)n = �̂n
+ + (−�̂−)n and

�̂n
± = �̂±. Then Eq. (2) becomes [24]

|ψ〉〈Q|(〈ψ |Û |ψ〉)N |�〉
= |ψ〉〈Q|(r e− i

N P̂ + (1 − r) e
i
N P̂ )N |�〉

= |ψ〉
N∑

n=0

(
N

n

)
rn(1 − r)N−n〈Q|e− i

N (2n−N )P̂|�〉

≡ |ψ〉 fN,r (Q), (4)

where we have adopted the definition

fN,r (Q) =
N∑

n=0

(
N

n

)
rn(1 − r)N−n〈Q|e− i

N (2n−N )P̂|�〉 (5)

introduced in Ref. [24]. Note that fN,r (Q) represents the final,
unnormalized pointer wave packet in the Q representation.

Let the initial pointer state |�〉 = ∫ ∞
−∞ �(Q)|Q〉 dQ be a

Gaussian centered at zero,

�(Q) = 1

(2πσ 2)1/4
exp

(
− Q2

4σ 2

)
. (6)

The corresponding probability density P (Q) = |�(Q)|2 is a
Gaussian of width σ , which is equal to the uncertainty in Q
given by

√
〈Q2〉 − 〈Q〉2 [26]. Then Eq. (5) becomes [9,24]

fN,r (Q) =
N∑

n=0

(
N

n

)
rn(1 − r)N−n�[Q − (2n − N )/N]. (7)

C. Analyzing the final pointer state

To facilitate further evaluation of the final pointer wave
packet, Eq. (7), we follow Ref. [24] and approximate the
binomial distribution in Eq. (7) using the normal distribution,(

N

n

)
rn(1 − r)N−n ≈ 1√

2πNr(1 − r)
exp

(
− (n − Nr)2

2Nr(1 − r)

)
,

(8)

which improves as N gets larger. This gives

fN,r (Q) ≈
√

σ

(2π )1/4σN,r
exp

(
− [Q − (2r − 1)]2

4σ 2
N,r

)
, (9)

where

σN,r =
√

2r(1 − r)

N
+ σ 2 (10)

is the width of the final probability density | fN,r (Q)|2 for the
pointer and therefore represents the uncertainty of the pointer
(in the Q representation) at the end of the measurement [27].
Figure 1 indicates that the normal distribution is an excellent
approximation in the weak-measurement regime Nσ 
 1 rel-
evant to a Zeno protective measurement.

From Eq. (10) we see that σN,r � σ , i.e., the pointer wave
packet will always broaden (see Fig. 2) except in two limit-
ing cases: (i) N → ∞, i.e., for an infinitely weak protective
measurement with infinitely many stages; (ii) r = 0 or r = 1,
which correspond to the system being in the extremal states
|−〉 and |+〉, respectively. The latter case can be understood by
noting that if the system is in one of the extremal states, then
the pointer shift will always be in the same direction, simply
translating the pointer. For all other states, the pointer shift is
a superposition of two opposite shifts (corresponding to the
action of the unitary evolution operator on a superposition of
|+〉 and |−〉), which will distort (broaden) the wave packet.
This broadening is most pronounced for an equal-weight su-
perposition of |+〉 and |−〉, i.e., for r = 0.5, in which case we
have

σN,r=0.5 =
√

1

2N
+ σ 2. (11)
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(a) σ = 0. )b(1 σ = 0.2

FIG. 1. Comparison of the exact expression, Eq. (7), for the final pointer wave packet (solid orange line) and the approximation, Eq. (9),
based on the normal distribution (dashed blue line), for different values of N , with r = 0.7 and (a) σ = 0.1 and (b) σ = 0.2. The plots show
that whenever the measurement is reasonably weak [i.e., (σN )−1 � 1], the normal distribution provides a good approximation.

The probability for the system to survive the N protection
stages is (see also Ref. [24])

pN,r =
∫ ∞

−∞
| fN,r (Q)|2dQ = σ

σN,r
=

[
2r(1 − r)

Nσ 2
+ 1

]−1/2

,

(12)

which is simply the inverse of the relative wave-packet broad-
ening shown in Fig. 2, and is plotted in Fig. 3. For given N and
σ , the survival probability is lowest for the state with r = 0.5,
since for this state the broadening of the pointer wave packet
is most pronounced. This bound is plotted in Fig. 4. It shows
that, in the relevant weak-measurement regime Nσ 
 1, the
survival probability is quite large (see also Ref. [9] for an
analysis and discussion of survival probabilities in protective
measurements). For example, for σ = 0.1 and N = 50 Zeno
stages (representing an only moderately weak measurement),
the probability of surviving all Zeno stages, even in this

worst-case scenario with r = 0.5, is 0.71, which increases to
0.82 for N = 100 stages.

III. COMPARISON OF MEASUREMENT UNCERTAINTIES

We now use the above results to derive an expression
that quantifies the performance of the protective measurement
in terms of the ratio of the uncertainties for the protective
measurement and the strong measurement. For concreteness,
let us consider a photonic setting with M initial photons,
each prepared in the state |ψ〉 = cos θ |H〉 + sin θ |V 〉 (and
thus r = cos2 θ ), and a measurement of the linear polarization
observable Ô = |H〉〈H | − |V 〉〈V |.

For a projective (strong) measurement with a beam splitter,
we can assume that all M photons are also detected. Therefore,
the uncertainty in the measured expectation value obtained
from M detected photons is the standard deviation of the
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FIG. 2. Broadening of the pointer wave packet during the pro-
tective measurement, as quantified in terms of the final width
(uncertainty) σN,r [see Eq. (10)] relative to the initial width σ . The
plot shows the ratio σN,r

σ
as a function of r (which specifies the state

of the system) and N (the number of Zeno stages, here between 5
and 100), for σ = 0.05 (orange, top surface), σ = 0.1 (blue, second
from top), and σ = 0.2 (green, third from top). The level plane (red,
bottom surface) represents the floor σN,r

σ
= 1 corresponding to no

broadening.

mean,

uSM =
√

〈Ô2〉 − 〈Ô〉2

√
M

=
√

4r(1 − r)√
M

= |sin(2θ )|√
M

, (13)

where we have shown the result alternatively in terms of r
and θ .

For the protective measurement, only pN,rM photons are
actually detected, where pN,r is the survival probability given
by Eq. (12). Thus the uncertainty is the standard deviation of
the mean for this sample size,

uPM = σN,r√
pN,rM

. (14)

Following Refs. [9,11], we quantify the relative measure-
ment performance in terms of the ratio R = uSM

uPM
. Whenever

R > 1, the protective measurement will be advantageous
by virtue of the measured expectation value having smaller
uncertainty. Using Eqs. (13) and (14) together with the ex-
pressions (10) and (12) for σN,r and pN,r , we obtain our main

FIG. 3. Probability pN,r , Eq. (12), for the system to survive the N
protection stages, shown as a function of N and r (which specifies the
state of the system), for σ = 0.05 (orange, bottom surface), σ = 0.1
(blue, middle surface), and σ = 0.2 (green, top surface).

FIG. 4. Survival probability pN,r , Eq. (12), for a protective
measurement of the state |ψ〉 = 1√

2
(|+〉 + |−〉) (i.e., r = 0.5), rep-

resenting a lower bound on the probability for given N and σ ,
shown for σ = 0.05 (orange, solid line), σ = 0.1 (blue, dashed), and
σ = 0.2 (green, dashed-dotted).

result,

R = uSM

uPM
=

√
pN,r

√
4r(1 − r)

σN,r
=

√
4r(1 − r)σ[ 2r(1−r)
N + σ 2

]3/4

=
√

σ |sin(2θ )|(
sin2(2θ )

2N + σ 2
)3/4 , (15)

which is plotted in Fig. 5.
We see that the protective measurement is always advan-

tageous (R > 1) except when the state is very close to the
extremal states |±〉 (i.e., if r � 1 or r ≈ 1). Outside these
extremal regions, the advantage persists even for a very small
number N of Zeno stages, although, as expected, the perfor-
mance improves as N is increased, i.e., as the pointer shift per
stage is reduced. Another important observation concerns the
role played by the initial width σ of the pointer wave packet.
There is a subtle tradeoff between two competing effects. On
the one hand, a smaller value of σ makes the wave packet
more sharply defined and thereby reduces the uncertainty in
reading its center. On the other hand, a smaller value of σ also
makes the measurement stronger (since the overlap between
wave packets shifted in adjacent Zeno stages will be reduced,
making them more distinguishable) and hence the measure-
ment leads to a greater state disturbance per Zeno stage. We
see from Fig. 5, however, that the former influence clearly
dominates the final uncertainty: it is generally advantageous
to choose a smaller wave-packet width σ . This advantage
diminishes as N is reduced. This can be understood by noting
that smaller N means a larger average shift per Zeno stage and
therefore a narrower wave packet will be more affected (since
the measurement has effectively become stronger).

Note that, in the limit of large N , we have pN,r → 1 and
σN,r → σ , and therefore Eq. (15) becomes

R =
√

4r(1 − r)

σ
= |sin(2θ )|

σ
.

As expected, in this case the uncertainty of the protective mea-
surement is simply determined by the initial (and, in the limit
of large N , unchanging) width of the pointer wave packet.
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FIG. 5. Performance of the protective measurement, shown in terms of the performance quantifier R given by Eq. (15), as a function of the
number N of Zeno stages and the value r that specifies the measured quantum state |ψ〉 = √

r|+〉 + √
1 − r|−〉. The two plots represent two

different viewpoints of the same graph. The quantifier R represents the uncertainty in the protectively measured expectation value relative to
the uncertainty in the expectation value obtained from a series of projective measurements. Each surface in the graph corresponds to a different
value of the initial width σ of the pointer wave packet: σ = 0.05 (orange, top surface), σ = 0.1 (blue, second from top), σ = 0.2 (green, third
from top), and σ = 0.3 (red, fourth from top). The level plane (purple) represents the floor, R = 1, which corresponds to the same uncertainty
(and thus the same performance) for both the protective and projective measurements. Since the plot is symmetric about r = 0.5, we only show
the region 0 � r � 0.5.

IV. DISCUSSION

The analytical results presented in this paper demonstrate
that a measured expectation value will typically have a smaller
uncertainty when it is obtained from a Zeno protective mea-
surement than when it is obtained from a set of projective
(strong) measurements on an ensemble. This finding expands
on and confirms previous numerical [9] and experimental [11]
results. The performance advantage can be amplified by mak-
ing the pointer wave packet narrower (so that its center is more
easily pinpointed) and by increasing the number N of Zeno
stages while proportionally reducing the coupling strength (in
our model, this reduction is automatically built in by making
the coupling proportional to 1/N).

Despite the smaller uncertainty that a Zeno protective
measurement is able to achieve compared to projective mea-
surements on an ensemble, one may wonder if this really
makes protective measurements advantageous. After all, the
protection procedure in a Zeno protective measurement is
effectively a repreparation of the initial state and therefore it is
reasonable to ask whether this may amount to having to know
the initial state to begin with, in which case any expectation
values could simply be calculated from this state. But all that
is required for a Zeno protective measurement to be realized is
that the protection stage projects on the same state as the initial
preparation stage. For example, by employing an optical loop,
a single polarizer could be used to both prepare and protect
the photon state. Not only would the experimenter not need
to know the setting of this polarizer, but he might not even
be able to know it. For example, the polarizer setting could
be chosen by a quantum random number generator, with the
experiment sealed inside of a box, so that no information
about the state that is prepared and protected is available to
the experimenter. Another example is provided by the experi-
mental realization of a photonic Zeno protective measurement
described in Ref. [11]. There, the state protection is imple-
mented by a polarization stabilizer and it is impossible for the
experimenter to know what the photon state is.

Of course, there are many situations for which the use
of a Zeno protective measurement would be rather cumber-
some for the task at hand, because it requires harnessing the
state-preparation procedure to implement the protection and
it also requires multiple measurement and protection stages.
Therefore, if the task is simply to measure expectation val-
ues on an ensemble, protective measurements are unlikely to
challenge the primacy of strong measurements, such as those
realized by sending photons through a beam splitter. But, like
weak measurements in general, protective measurements offer
unique features and possibilities that make them interesting
in their own right and, as we have seen, can also provide a
fundamental advantage in performance.

Our model has neglected the influence of a potentially
present environment on the system–apparatus evolution. Pro-
tective measurements of open quantum systems subject to
decoherence-inducing interactions with an environment were
previously studied by us in Ref. [28]. While that study used
the model of adiabatic protective measurements rather than
the Zeno protective measurements of our present paper, it
is reasonable to expect that a similar study, using a sim-
ilar Hamiltonian for the interaction with the environment,
and using similar methods for solving the resulting system–
apparatus–environment model, could also be applied to Zeno
protective measurements. Given the mathematical similari-
ties, one may anticipate that some of the main results of
Ref. [28]—for example, the finding that the greatest impact
of the environment is frequently not on the measured system,
but on the behavior of the apparatus pointer—may also apply
to Zeno protective measurements. However, given that in a
Zeno protective measurement the system is repeatedly pro-
jected back onto its initial (pure) state, thereby disentangling
it not only from the apparatus but also from any potentially
present environment, one may conjecture that the influence
of the environment on Zeno protective measurements may
generally be less pronounced than for adiabatic protective
measurements. Furthermore, in the experimentally relevant
case of Zeno protective measurements implemented with
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photons [9–11], environmental interactions are unlikely to
play a significant role, since photons are largely immune to
environmental decoherence in such experiments. Nonetheless,
a rigorous study of Zeno protective measurements in the pres-
ence of a decoherence-inducing environment would constitute
an interesting subject for future investigation.

We note that there is a close connection between Zeno pro-
tective measurements and a class of quantum walks in which
the quantum particle is subject to a series of measurements
[29]. In such quantum walks, the unitary evolution of the
quantum particle is interrupted at regular time intervals by
repeated projective measurements performed on the particle,
for example, in order to detect its position or to check whether
it has reached a target site on the lattice. These measurements
are quite analogous to the repeated state-protection steps in a
Zeno protective measurement.

Repeated state-projection steps have also been used to
experimentally demonstrate the measurement of anoma-
lous weak values on a single photon [30]. This proce-
dure may be considered a kind of generalization of the

protective-measurement scheme. In both schemes, a series
of weak measurements with intermediate protection steps
is performed on a single system. In the Zeno protective-
measurement scheme, the protection corresponds to a posts-
election onto the same state as the preselected state. In the
weak-value measurement scheme of Ref. [30], the postse-
lected state is different, but it is subsequently rotated to match
the preselected state, so that the state entering each measure-
ment stage is identical to the initial state [31]. It would be
interesting to investigate whether measuring weak values in
this way may yield a performance advantage over the tradi-
tional way [32] of measuring weak values from the statistics of
single, weak measurements on an ensemble of identical pre-
and postselected systems.
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