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We present a general expression for the association rate for partially diffusion-controlled reactions between
spherical molecules with an asymmetric reactive patch on each surface. Reaction can occur only if the two
patches are in contact and properly aligned to within specified angular tolerances. This extends and generalizes
previous approaches that considered only axially symmetric patches; the earlier solutions are shown to be
limiting cases of our general expression. Previous numerical results on the rate of protein-protein association
with high steric specificity are in very good agreement with the value computed from our analytic expression.
Using the new expression, we investigate the influence of orientational constraints on the rate constant. We
find that for angular constraints of∼5°-15°, a typical range for example in the case of protein-protein
interactions, the reaction rate is about 2 to 3 orders of magnitude higher than expected from a naive geometric
model.

1. Introduction

The association of two macromolecules, in particular the
formation of protein-protein complexes, is an ubiquitous
process in biology. In the simplest case of the associating species
being modeled as uniformly reactive spheres, the diffusion-
controlled association rate is given by the classic Smoluchowski
result,1 kDC ) 4πDR, where D is the relative translational
diffusion constant andR denotes the sum of the radii of the
molecules. Typically, however, successful complex formation
hinges on the proper relative orientation of the reactants, which
can be represented by molecules carrying reactive surface
patches that have to come into contact with high steric specificity
for the reaction to occur.

The naive approach of multiplying the Smoluchowski rate
constant for uniformly reactive molecules by the probability that
in a random encounter the two molecules are properly oriented
(“geometric rate”) yields rate constants that are commonly
several orders of magnitude lower than the observed values.
Some authors attributed this puzzling behavior to the presence
of long-range attractive interactions between the molecules that
not only generally speed up the rate of encounter of the
molecules but also help “guide” the molecules into configura-
tions close to the proper mutual orientation.

In addition to this approach, various attempts have been made
to quantitatively elucidate the influence of orientational con-
straints and rotational diffusion on the association rate constant.
Among the earliest studies, Sˇolc and Stockmayer derived a
formal solution2 of the association rate constant of spherical
molecules with axially symmetric distributions of reactivity and
presented numerical results3 for the simplified case of one of
the molecules being uniformly reactive. Schmitz and Schurr4

investigated both analytically and numerically the problem of
the reaction between mobile orientable spheres, carrying single,
axially symmetric reactive patches on their surface, with

localized hemispherical sites on a plane. Shoup et al.6 introduced
a generally applicable approximative treatment that allowed
simplification of the complex formal solutions of Sˇolc and
Stockmayer3 and Schmitz and Schurr4 to closed analytical
expressions; this approximation was also used by Zhou5 in
deriving an expression for the association rate when each
molecule bears an axially symmetric reactive patch. All of these
approaches showed that, because of relative angular reorienta-
tions caused by translational and rotational diffusion, the
reduction in association rate brought about by orientational
constraints is significantly less than suggested by the reduction
in the probability for a properly oriented encounter.

The previous analytical treatments, however, impose only (at
most) axially symmetric orientational constraints, whereas no
analytical treatment has been presented thus far for the general
case of asymmetric reactive patches (as in the important case
of sterically highly specific protein-protein interactions), where
the precise relative orientation of the binding partners has to
be specified and appropriately constrained.

The only numerical estimates for the association rate constant
for this general case stem from Brownian dynamics simulations,
as for example performed by Northrup and Erickson,9 who
consider diffusional association of spherical molecules, each
bearing a reactive patch composed of four contact points in a
square arrangement on a plane tangential to the surface of the
molecules; reaction is then assumed to occur if three of the four
contact points are correctly matched and within a specified
maximum distance. The rate constants are again found to be
about 2 orders of magnitude higher than expected from a naive
geometric argument, but as the approach is not analytical, the
result is not readily generalizable.

In the following, we present a general expression for the
partially diffusion-controlled rate constantkDC for two spherical
molecules with fully asymmetric binding patches. The theoreti-
cal derivation is given in section 2. Various aspects of our
general expression are investigated in section 3, where we
demonstrate that previous approaches are, as expected, limiting
cases of our general treatment (section 3.1), discuss the
dependence of the rate constant on orientational constraints
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(section 3.2), and compare numerical values obtained from our
expression with the result of a Brownian dynamics simulation
by Northrup and Erickson9 (section 3.3).

2. Theory

2.1. Model and Coordinate System.Our model for bimo-
lecular association (see Figure 1) consists of two spherical
molecules with radiiR1 and R2, respectively, whose relative
distance and angular orientation change by translational and
rotational diffusion with diffusion constantsD ) D1

trans +
D2

trans, D1
rot, andD2

rot. The center of sphere 1 coincides with the
origin of a fixed-space coordinate system{x, y, z}. The position
of the center of sphere 2 is specified by the center-to-center
vectorr whose spherical coordinates with respect to the fixed-
space coordinate system are given by (r, θ, φ).

Each sphere carries a body-fixed coordinate system, denoted
by {x1, y1, z1} and {x2, y2, z2}, respectively, with the axesz1

and z2 pointing alongr when the two spheres are perfectly
aligned (and hencez1 andz2 can be thought of pointing at the
“center” of the reactive patch). The orientation of these body-
fixed coordinate systems with respect to the fixed-space
coordinate system{x, y, z} is parametrized by sets of Euler
anglesΨ1 ) (φ1, θ1, ø1) andΨ2 ) (φ2, θ2, ø2). The anglesφi

andθi, i ) 1, 2, are the usual azimuthal and polar coordinates
of the zi axis, whereasøi measures the angle from the line of
nodes, defined to be the intersection of thexyand thexiyi planes,
to theyi axis. The set (r, θ, φ, Ψ1,Ψ2) comprises the absolute
coordinates of the system.

For a convenient formulation of the reaction condition, we
additionally introduce a relative coordinate system{xrel, yrel, zrel}.
Thezrel axis coincides with the center-to-center vectorr , whereas
thexrel axis lies in the plane spanned byr and thez axis of the
fixed-space coordinate system{x, y, z}. The Euler anglesΨA

) (φA, θA, øA) andΨB ) (φB, θB, øB) specify the orientation
of the body-fixed coordinate systems{x1, y1, z1} and {x2, y2,
z2} with respect to the coordinate system{xrel, yrel, zrel}.

2.2. Reaction Conditions.To fully specify the position and
orientation of two rigid bodies, nine variables are required, for

instance, as introduced through our absolute coordinate system,
(r, θ, φ, Ψ1, Ψ2). However, for the expression of our reaction
condition, only five variables, describing the distance between
the two spheres and their relative orientation, are needed. First,
the center-to-center distance is parametrized byr. The differ-
ences in the orientation of the two spheres can be fully captured
by the differences in the Euler anglesΨA ) (φA, θA, øA) and
ΨB ) (φB, θB, øB), namely,δθ ) |θA - θB|, δφ ) |φA - φB|,
andδø ) |øA - øB|. Finally, we need a measure for the extent
to which the reactive patches on the spheres are aligned with
the center-to-center vectorr , which can be represented by the
sum of the polar anglesθA + θB. To facilitate the subsequent
calculations, we replace the conditions on|θA - θB| andθA +
θB with independent constraints onθA and θB. Our reaction
condition is therefore

2.3. Derivation of the Rate Constant Expression.To derive
an expression for the association rate constant, we determine
the concentrationc(r, θ, φ, Ψ1, Ψ2) of spheresB by solving
the steady-state translational-rotational diffusion equation in
the absolute coordinate system{r, θ, φ, Ψ1, Ψ2} introduced in
the preceding section,

where

is the Laplace operator acting on the center-to-center vectorr ,
expressed in the spherical coordinates (r, θ, φ), and theδsi, s )
x, y, z and i ) 1, 2, denote an infinitesimal rotation of sphere
i about its body-fixedsi axis. Equation 2 can be viewed as
composed of three individual diffusional contributions, namely,
the diffusional motion of the center of mass of sphere 2 relative
to sphere 1 and the rotational diffusion of each sphere.

As in quantum mechanics, we can define angular momentum
operatorsĴsi ) -ip∂/∂δsi as generators of infinitesimal rotations
of the spheres about their body-fixed axes, and can hence rewrite
eq 2 as

whereJi
2 ) (-ip)-2(Ĵxi

2 + Ĵyi

2 + Ĵzi

2). Using the basic relations7

Figure 1. Absolute and relative coordinate system describing the
diffusional motion of the two spheres (see text). For the sake of clarity,
all ø and some of theφ angles have been omitted in the drawing.
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∇r
2 ) ∂

2

∂r2
+ 2

r
∂

∂r
+ 1

r2sinθ
∂

∂θ (sinθ ∂
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r2sin2θ
∂
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∂φ
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0 ) D∇r
2c + D1

rot J1
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rot J2
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dδxi
) dθi sin øi - dφi sin θi cosøi

dδyi
) dθi cosøi + dφi sin θi sin øi

dδzi
) dφi cosθi + døi (5)
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we can express the operatorJi
2 in terms of the Euler anglesΨi

) (φi, θi, øi),

The advantage of the formulation of the diffusion equation, eq
2, in terms of the operatorsJi

2 in eq 4, lies in the fact that the
properties of theJi

2 are well-known, in particular their eigen-
functions, which are given by the Wigner rotation matrices
Dmn

l (φ, θ, ø) ) e-imφdmn
l (θ)e-inø.8

The general solution to eq 4 that obeys the boundary condition
at r f ∞,

can therefore be written as a series of products of the
eigenfunctions of∇r

2, J1
2, andJ2

2,

where

are the modified Bessel functions of the third kind10 (giving
the desired behaviorfll1l2(r) f 0 as r f ∞), with ê ≡
[(D1

rot/D)l1(l1 + 1) + (D2
rot/D)l2(l2 + 1)]1/2.

For the boundary condition atr ) R, the usual, but
analytically hardly tractable radiation boundary condition is

whereκ quantifies the extent of diffusion control in the reaction,
andF(ΨA,ΨB) ≡ H (θA

0 - θA)H (θB
0 - θB)H (δφ0 - δφ)H (δø0

- δø) represents the reaction condition eq 1, whereH (x) is
the step function defined byH (x) ) 0 for x < 0 andH (x) )
1 for x g 0.

In our approach, we express the radiation boundary condition
using the constant-flux approximation as introduced by Shoup
et al.,6 by requiring that the flux is a constant over the angular
ranges in which the reaction can take place,

and that eq 10 is obeyed on the average over the surfaces of
the spheres, that is,

where we have introduced the abbreviation∫ dΩ ≡ ∫ sin θ dθ
∫ dφ.

To proceed, we expressF(ΨA,ΨB) in absolute coordinates.
First, we expandF(ΨA,ΨB) in terms of rotation matrices,

where the expansion coefficientsClAlB

mAnAmBnB are given by

The absolute coordinate system{x, y, z} can be transformed
into the relative coordinate system{xrel, yrel, zrel} by rotations
through the three Euler angles (φ - π,θ, 0). The corresponding
transformations of the rotation matrices appearing in eq 13 are
then

The expansion coefficientsAll1l2

mm1n1m2n2 in eq 8 can be obtained
by substituting the expansion forF(ΨA, ΨB), eq 13, expressed
in absolute coordinates (r, θ, φ, Ψ1, Ψ2) using the above
transformations, into eq 11, which yields

where( l
m

l1
m1

l2
-m2

) is the Wigner 3-j symbol. Evaluating eq 12

using the expansion coefficients, eq 15, yields for the constant
Q

where we have introduced

a0/(4π × 8π2 × 8π2) is the fraction of angular orientational
space over which the reaction can occur. In deriving eqs 15
and 16, we have made use of the identities8

Ji
2 ) 1

sin θi

∂

∂θi (sin θi
∂

∂θi) +

1

sin2 θi
( ∂

2

∂φi
2

+ ∂
2

∂øi
2

- 2cosθi
∂

2

∂φi∂øi) (6)

lim
rf∞

c(r, θ, φ, Ψ1, Ψ2) ) c0 ) const. (7)

c(r, θ, φ, Ψ1, Ψ2) ) c0 +

∑
ll1l2

∑
mm1m2

∑
n1n2

All1l2

mm1n1m2n2fll1l2
(r)Yl

m(θ, φ)Dm1n1

l1 (Ψ1)Dm2n2

l2 (Ψ2) (8)

fll1l2
(r) )

Kl+1/2(êr)

(êr)1/2
(9)

∂c
∂r

|R )κ

D
F(ΨA,ΨB)c(R, θ, φ, Ψ1,Ψ2) (10)

∂c
∂r

|R ) QF(ΨA,ΨB) (11)

∫ dΩ ∫ dΨ1 ∫ dΨ2 F(ΨA,ΨB)Q )

κ

D∫ dΩ ∫ dΨ1 ∫ dΨ2 F(ΨA,ΨB)c(R, θ, φ, Ψ1, Ψ2) (12)

F(ΨA,ΨB) ) ∑
lAlB

∑
mAnA

∑
mBnB

ClAlB

mAnAmBnB DmAnA

lA (ΨA)DmBnB

lB (ΨB)

(13)

ClAlB

mAnAmBnB )
2lA + 1

8π2

2lB + 1

8π2 ∫ dΨA ∫ dΨBDmAnA

lA* (ΨA)

DmBnB

lB* (ΨB)F(ΨA,ΨB)

)
2lA+1

8π2

2lB+1

8π2

4πsin(mAδφ0)

mA

4πsin(nAδø0)

nA

× ∫0

θA
0

sinθA dθAdmAnA

lA (θA)∫0

θB
0

sin θB dθB d-mA-nA

lB

(θB)

≡ 2lA + 1

8π2

2lB + 1

8π2
ĈlAlB

mAnA (14)

DmAnA

lA (ΨA) ) ∑
m1

Dm1mA

lA (φ - π, θ, 0)Dm1nA

lA (Ψ1)

DmBnB

lB (ΨB) ) ∑
m2

Dm2mB

lB (φ - π, θ, 0)Dm2nB

lB (Ψ2)

All1l2

mm1n1m2n2 )
Q

f′ll1l2
(R)

(-1)m+m1+m2-n1-n2

x4π(2l + 1)( l
m

l1
-m1

l2
-m2

)∑mA

Ĉl1l2

mA-n1( l
0

l1
mA

l2
-mA

) (15)

Q ) c0ao × [Dκa0 - ∑
ll1l2

fll1l2
(R)

f′ll1l2
(R)

4π(2l + 1)
2l1 + 1

8π2

2l2 + 1

8π2

∑
n)-l1

+l1 [ ∑
m)-l1

+l1

Ĉl1l2

mn

( l
0

l1
m

l2
-m)]2]-1

(16)

a0 ) ∫ dΩ ∫ dΨ1 ∫ dΨ2 F(ΨA, ΨB) )

(4π)3δφ0 δø0(1 - cosθA
0)(1 - cosθB

0) (17)
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The diffusion-controlled rate constant is given by

Because the functionsfll1l2(r), defined in eq 9, obey the recursion
relation

the final expression for the diffusion-controlled rate constant,
eq 18, becomes

with ê* ) êR.

3. Results

3.1. Limiting Cases. 3.1.1. Axially Symmetric ReactiVe
Patches.Zhou5 presented an analytical expression for the
association rate constant of two spherical molecules bearing
axially symmetric patches. In the notation of our model, this
corresponds to settingδφ0 ) δø0 ) π, which makesĈl1l2

mn ) 0
in eqs 14 and 20, unlessm ) n ) 0. Using D 00

l (φ, θ, ø) )
d00

l (φ, θ, ø) ) Pl(cos θ), wherePl(cos θ) are the Legendre
polynomials, the expression for the rate constant, eq 20, becomes

which agrees with the solution presented by Zhou.5

3.1.2. Uniform ReactiVity. If we assume that one sphere is
uniformly reactive and the other has an axially symmetric patch
(that is,δφ0 ) δø0 ) π andθB

0 ) π), we arrive at the model
introduced by Sˇolc and Stockmayer.2 Then, sinceθB

0 ) π and
∫0

π sin θ dθ Pl(cosθ) ) 0 if l * 0, only the terml2 ) 0 (and
hencel ) l1) gives a nonzero contribution to the sum in eq 21.
Then eq 21 reduces to

where nowê* ) R[(D1
rot/D)l (l + 1)]1/2, which coincides with

the result of Sˇolc and Stockmayer3 and Shoup et al.6

Assuming both spheres to be uniformly reactive,θA
0 ) θB

0 )
δφ0 ) δø0 ) π, only the terml ) l1 ) l2 ) 0 contributes, and
henceê* ) 0. BecauseK1/2(ê*)/ê*K3/2(ê*) f 1 asê* f 0, eq
22 becomes, in the fully diffusion-controlled case (κ f ∞), kDC

) 4πDR, which is just the classic Smoluchowski diffusion-
controlled rate constant for two uniformly reactive spheres.

3.2. Numerical Evaluation.In the following, we shall assume
the reaction to be fully diffusion-controlled (κ f ∞), and take
the radii of the two spheres to be identical,R1 ) R2. Instead of
plotting the absolute value of the association rate constantkDC,
we introduce the dimensionless relative association rate constant
kDC* ) kDC/4πDR, which is the ratio of the orientation-
constrained rate constant to the Smoluchowski rate constant for
two uniformly reactive spheres.

The full dependence of the relative association rate constant
on θA

0 , θB
0, δφ0, andδø0 is not easy to display in a single plot.

For simplicity, we set all four parameters equal, and in Figure
2 plot the relative association ratekDC

/ computed from eq 20 as
a function of this single parameter (referred to asΦ0 in the
following). For comparison, we also show the relative associa-
tion rate expected from a purely probabilistic argument (geo-
metric rate), given by the fraction of angular orientational space
over which the reaction can occur,a0/(4π × 8π2 × 8π2) )
Φ0(1 - cosΦ0)2/4π2.

It is evident from Figure 2 that the difference between the
rate constantkDC* and the geometric rate gets more striking as
the angular constraintΦ0 becomes more stringent. For instance,

Yl
m*(θ, φ) ) x2l + 1

4π
D m0

l (φ, θ, 0)

∫ dΨ D m1n1

l1* (Ψ)D m2n2

l2 (Ψ) ) 8π2

2l1 + 1
δl1l2

δm1m2
δn1n2

∫ dΨ D m1n1

l1 (Ψ)D m2n2

l2 (Ψ)D m3n3

l3 (Ψ) )

8π2( l1
m1

l2
m2

l3
m3

)( l1
n1

l2
n2

l3
n3

)
∑
m1m2

( l1
m1

l2
m2

l3
m3

)( l1
m1

l2
m2

l′3
m3′) )

1

2l3 + 1
δl3l′3

δm3m′3

kDC ) 1

(8π2)2

R2D
c0

∫ dΩ ∫ dΨ1∫ dΨ2
∂c
∂r

|R ) 1

(8π2)2

R2D
c0

a0Q

(18)

f′ll1l2
(r) )l

r
fll1l2

(r) - êf(l+1)l1l2
(r) (19)

kDC ) D(Ra0/8π2)2 ×

[Dκa0 - R∑
ll1l2

Kl + 1/2(ê*)

lK l+1/2(ê*) - ê*Kl +3/2(ê*)
×

4π(2l + 1)
2l1 + 1

8π2

2l2 + 1

8π2
∑

n)-l1

+l1 ( ∑
m)-l1

+l1

Ĉl1l2

mn

( l
0

l1
m

l2
-m))2]-1

(20)

kDC ) 4πDR2(1 - cosθA
0)2(1 - cosθB

0)2 × [4D

κ
(1 -

cosθA
0)(1 - cosθB

0) - R∑
ll1l2

Kl+1/2(ê*)

lK l+1/2(ê*) - ê*Kl+3/2(ê*)

(2l + 1)(2l1 + 1)(2l2 + 1)(∫0

θA
0

sin θA dθAPl1
(cosθA))2

(∫0

θB
0

sin θB dθB Pl2
(cosθB))2( l

0
l1
0

l2
0)2]-1

(21)

Figure 2. Diffusion-controlled (κ f ∞) relative association rate
constantkDC* ) kDC/4πDR, with kDC computed from eq 20, as a function
of the angular constraintΦ0 ≡ θA

0 ) θB
0 ) δφ0 ) δø0 (solid curve).

Also shown is the rate expected from a simple probabilistic argument,
kDC ) Φ0(1 - cosΦ0)2/4π2 (geometric rate; dashed curve).

kDC ) 2π DR2(1 - cosθA
0)2 ×

[Dκ (1 - cosθA
0) - R∑

l

(l + 1/2)Kl+1/2(ê*)

lK l+1/2(ê*) - ê*Kl+3/2(ê*)

(∫0

θA
0

sinθA dθA Pl(cosθA))2]-1

(22)
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in the important case of sterically highly specific protein-protein
interactions whereΦ0 will typically range between 5° and 15°,
the geometric rate is about 2 to 3 orders of magnitude too low,
as compared with the association rate computed from eq 20.

3.3. Comparison against Brownian Dynamics Simulations.
In the Brownian dynamics simulations by Northrup and Erick-
son,9 protein molecules are modeled as hard spheres ofR ) 18
Å diffusing in water (η = 8.9× 10-4 Ns/m2) at T ) 298 K; no
forces are assumed to act between the molecules. The transla-
tional and rotational diffusion constants are computed from the
Stokes-Einstein relationsDtrans ) kBT/6πηR andDrot ) kBT/
8πηR3, respectively.

Instead of angular constraints, the model uses a contact-based
reaction condition. A set of four distinctly numbered contact
points is mounted on each sphere in a 17Å× 17 Å square
arrangement on a plane tangential to the surface of the sphere.
Reaction is assumed to occur when at least three of the four
contact points are correctly matched and within a maximum
distance of 2 Å.

We performed numerical simulations to estimate the angles
θA

0 , θB
0, δφ0, andδø0 (as defined in our model, see section 2)

that correspond to this contact-based reaction condition. Clearly,
there will be a multiplicity of sets of these angles for which the
contact-based reaction criterion is met. To reduce the search
space in a reasonable way, we looked for geometric configura-
tions where all four angles were equal,θA

0 ) θB
0 ) δφ0 ) δø0,

and found that the contact-based reaction condition can be well
represented by an angular constraint ofθA

0 ) θB
0 ) δφ0 ) δø0

) 6.7°.
With these angular constraints, numerical evaluation of eq

20 with the parameters specified above andκ f ∞ giveskDC )
1.04× 105 M-1 s-1, which is in very good agreement with the
value obtained from the Brownian dynamics simulation by
Northrup and Erickson,9 kDC ) 1 × 105 M-1 s-1.

4. Summary

We have presented a general expression for the partially
diffusion-controlled association rate of two molecules where
reaction can occur solely if specified constraints on the mutual
orientation are fulfilled. Our solution goes far beyond previous
treatments in the ability to impose very general, asymmetric
orientational constraints, as needed for instance in a proper
description of the sterically highly specific association of two
proteins.

Because our expression for the rate constant, eq 20, was
derived under the assumption of no forces acting between the
two molecules, a comparison of measured association rates with
their theoretical values calculated from eq 20 should reveal the
extent to which long-range interactions contribute to the rate
of intermolecular association. Such an investigation would be
of particular interest in the case of the association of proteins
with small ligands and other proteins.
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