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A General Expression for Bimolecular Association Rates with Orientational Constraints
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We present a general expression for the association rate for partially diffusion-controlled reactions between
spherical molecules with an asymmetric reactive patch on each surface. Reaction can occur only if the two
patches are in contact and properly aligned to within specified angular tolerances. This extends and generalizes
previous approaches that considered only axially symmetric patches; the earlier solutions are shown to be
limiting cases of our general expression. Previous numerical results on the rate of-ppot¢@in association

with high steric specificity are in very good agreement with the value computed from our analytic expression.
Using the new expression, we investigate the influence of orientational constraints on the rate constant. We
find that for angular constraints of5°—15°, a typical range for example in the case of protginotein
interactions, the reaction rate is about 2 to 3 orders of magnitude higher than expected from a naive geometric
model.

1. Introduction localized hemispherical sites on a plane. Shoup &iratoduced
The association of two macromolecules, in particular the a gen?ra”.y applicable approximative trea@ment Ihat allowed
formation of proteir-protein complexes, is an ubiquitous gtmpl!flcatgn OL tgehco.rpplexdfosrmhatli :olutllonsdofo&l i'ndl
process in biology. In the simplest case of the associating species ockmay _atrr']. chmitz arl. chur OI close dat?aélica
being modeled as uniformly reactive spheres, the diffusion- expressions; this approximation was also used by Zhou

e L - .deriving an expression for the association rate when each
controlled association rate is given by the classic Smoluchowski molecule bears an axially symmetric reactive patch. Al of these
result! kpc = 47DR, where D is the relative translational y sy P ’

diffusion constant an® denotes the sum of the radii of the approaches showed that, because of relative angular reorienta-

. .~ tions caused by translational and rotational diffusion, the
molecules. Typically, however, successful complex formation oo e . .
. . . . -, reduction in association rate brought about by orientational
hinges on the proper relative orientation of the reactants, which constraints is significantly less than suggested by the reduction
can be represented by molecules carrying reactive surface. 9 y 99 y

patches that have to come into contact with high steric specificity in the prObfib'“ty for a' properly oriented encour]ter.
for the reaction to occur. The previous analytical treatments, however, impose only (at

The naive approach of multiplying the Smoluchowski rate most) axially symmetric orientational constraints, whereas no
constant for uniformly reactive molecules by the probability that 2nalytical treatment has been presented thus far for the general
in a random encounter the two molecules are properly oriented €@S€ 0f asymmetric reactive patches (as in the important case
(“geometric rate”) yields rate constants that are commonly of stenca_lly hlghly spec_lflc pr_oterﬁproteln_|ntf_eract|ons),Where
several orders of magnitude lower than the observed values.the precise relative orientation of the binding partners has to

Some authors attributed this puzzling behavior to the presenceP® SPecified and appropriately constrained.
of long-range attractive interactions between the molecules that The only numerical estimates for the association rate constant
not only generally speed up the rate of encounter of the for this general case stem from Brownian dynamics simulations,
molecules but also help “guide” the molecules into configura- as for example performed by Northrup and Erick8omho
tions close to the proper mutual orientation. consider diffusional association of spherical molecules, each
In addition to this approach, various attempts have been madebearing a reactive patch composed of four contact points in a
to quantitatively elucidate the influence of orientational con- square arrangement on a plane tangential to the surface of the
straints and rotational diffusion on the association rate constant.molecules; reaction is then assumed to occur if three of the four
Among the earliest studies, 0o and Stockmayer derived a contact points are correctly matched and within a specified
formal solutioR of the association rate constant of spherical Mmaximum distance. The rate constants are again found to be
molecules with axially symmetric distributions of reactivity and about 2 orders of magnitude higher than expected from a naive
presented numerical residitior the simplified case of one of ~ geometric argument, but as the approach is not analytical, the
the molecules being uniformly reactive. Schmitz and Schurr  result is not readily generalizable.
investigated both analytically and numerically the problem of  In the following, we present a general expression for the
the reaction between mobile orientable spheres, carrying single partially diffusion-controlled rate constakyc for two spherical
axially symmetric reactive patches on their surface, with molecules with fully asymmetric binding patches. The theoreti-
cal derivation is given in section 2. Various aspects of our
y fCor,rtESp?T/singhauthor- Mailirég a3dd68551 DIEPartmegtg Og Biochlemriftry, general expression are investigated in section 3, where we
B s s s, dCONSIale tha previous approaches are, as expected, miting
* Department of Physics. cases of our general treatment (section 3.1), discuss the
* Department of Biochemistry. dependence of the rate constant on orientational constraints
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instance, as introduced through our absolute coordinate system,
(r, 0, ¢, W1, Wy). However, for the expression of our reaction
condition, only five variables, describing the distance between
the two spheres and their relative orientation, are needed. First,
the center-to-center distance is parametrized.bjhe differ-

x ences in the orientation of the two spheres can be fully captured
by the differences in the Euler angli& = (¢a, 0a, xa) and
z Sphere 2 Wg = (¢g, O, x8), Namely,00 = |[0a — Og|, 6¢ = |pa — ¢8|,

anddy = |ya — xsl. Finally, we need a measure for the extent
to which the reactive patches on the spheres are aligned with
the center-to-center vector which can be represented by the
sum of the polar angle8s + 6g. To facilitate the subsequent
calculations, we replace the conditions|éa — 6g| andfa +

Og with independent constraints diy and 0g. Our reaction
condition is therefore

r=R,+R,=R 0)
. Oap = Onp 0

0¢ = |pa — gl = d¢y (Il
Ox = lxa — a8l = 0%0 (IV)

1)

2.3. Derivation of the Rate Constant ExpressionTo derive
Figure 1. Absolute and relative coordinate system describing the an expressmn_for the association rate constant, we d_etermlne
diffusional motion of the two spheres (see text). For the sake of clarity, the concentratiore(r, 6, ¢_’ Wy, IPZ_) of sp_hergsB by SOI_V'ng_

all y and some of the angles have been omitted in the drawing. the steady-state translatiorabtational diffusion equation in

) ) ) the absolute coordinate systdm 6, ¢, W1, W,} introduced in
(section 3.2), and compare numerical values obtained from ourpe preceding section,

expression with the result of a Brownian dynamics simulation

Sphere 1

by Northrup and Ericksdh(section 3.3). @ Co— DYl +Dm( e .\ ¢ . 62c)
2. Theory ot - 1 \os2 " a8z T 962

CoM motion - ~ -

2.1. Model and Coordinate SystemOur model for bimo- rotation of sphere 1 @)

lecular association (see Figure 1) consists of two spherical 9 0 0
molecules with radiiR; and Ry, respectively, whose relative Drot O + dc + 9 c)
distance and angular orientation change by translational and 2 8632 8652 3632
rotational diffusion with diffusion constantp = D™ + b —~— —
Dy DI, andDY". The center of sphere 1 coincides with the rotation of sphere 2
origin of a fixed-space coordinate systémy, z}. The position where

of the center of sphere 2 is specified by the center-to-center

vectorr whose spherical coordinates with respect to the fixed- 2 25 1 9 5 1P

space coordinate system are given hyé ¢). Vf =+ 4 — (si ) -
Each sphere carries a body-fixed coordinate system, denoted ar? T or r’siny 00 r?sinfo 8¢2

by {x1, y1, z1} and{xz, y», z}, respectively, with the axez ) ]

and z pointing alongr when the two spheres are perfectly 'S the Laplace operator acting on the center-to-center vector

aligned (and hence andz can be thought of pointing at the ~ expressed in the spherical coordinated)( ¢), and theds, s =

“center” of the reactive patch). The orientation of these body- % ¥, zandi = 1, 2, denote an infinitesimal rotation of sphere

fixed coordinate systems with respect to the fixed-space | about its body-fixeds axis. Equation 2 can be viewed as

coordinate systenfix, y, Z} is parametrized by sets of Euler composed of three individual diffusional contributions, namely,

20

®3)

anglesWy = (¢1, 01, y1) and W, = (¢2, 02, ¥2). The anglesp; the diffusional motion of the center of mass of sphere 2 relative
and@;, i = 1, 2, are the usual azimuthal and polar coordinates t0 Sphere 1 and the rotational diffusion of each sphere.
of the z axis, whereag; measures the angle from the line of ~ ASin quantum mechanics, we can define angular momentum
nodes, defined to be the intersection of tiyand thexy; planes, operatorsls; = —iha/ddg as generators of infinitesimal rotations
to they; axis. The setr( 6, ¢, W1, W) comprises the absolute of the spheres about their body-fixed axes, and can hence rewrite
coordinates of the system. eq 2 as

For a convenient formulation of the reaction condition, we 5 ot <2 ot <2
additionally introduce a relative coordinate systoga, Viel, Zel} - 0=DvVic+ Dy Jic+ Dy Je (4)

Thez axis coincides with the center-to-center vectovhereas . . .
the x¢ axis lies in the plane spanned byand thez axis of the  whereJ? = (=ih)%J; + J + X). Using the basic relatiofis
fixed-space coordinate systefrR, y, z}. The Euler angledPa

= (¢a, Oa, xp) andWg = (¢s, 08, y&) specify the orientation déxi = do; siny; — dg; sin6; cosy;
of the body-fixed coordinate systenfigi, yi, zz} and{x, y», . .
25} with respect to the coordinate systéMei, Yrel, Zel} - do, = db; cosy; + d¢; sin 6, siny;

2.2. Reaction Conditions.To fully specify the position and

orientation of two rigid bodies, nine variables are required, for dézi = d¢; coso; + dy; ()
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we can express the operatl?rin terms of the Euler angleé¥;

= (¢, 65, xi).

2 _ 9
T (S'”9'30
1 [#® & ¥
—+——2cosf.——| (6
sin® 0, \d¢?  ay? ' 00 ©)

The advantage of the formulation of the diffusion equation, eq
2, in terms of the operatod;? in eq 4, lies in the fact that the
properties of the]i2 are well-known, in particular their eigen-
functions, which are given by the Wigner rotation matrices
D, 0, ) = €d, (O)e .8

The general solution to eq 4 that obeys the boundary condition
atr — oo,

limc(r, 0, ¢, ¥,, ¥,) = ¢, = const. @)
r—oo

can therefore be written as a series of products of the
eigenfunctions o2, J2, and J3,

cr,0,¢, ¥, ¥,)=c,+
Z > > AT (YO, @) S (YD) DR, () (8)
12 Mmyime NNy

where

Ki12(81)
( gr)l/2

are the modified Bessel functions of the third Kifidgiving
the desired behaviofy,,(f) — 0 asr — o), with & =
[(DYYD)1(l1 + 1) + (DYYD)I(l, + 1)]2

For the boundary condition at R, the usual, but
analytically hardly tractable radiation boundary condition is

£y, (1) = 9)

TR =SF(W, TR 0,6, W, 0)  (10)
wherex quantifies the extent of diffusion control in the reaction,
andF(Wa,Ws) = 703 — 0a)A(03 — 08) (o — 0) A (S0

— Oy) represents the reaction condition eq 1, whef&) is
the step function defined hy7{x) = 0 for x < 0 and.%(x) =

1 forx = 0.
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F(Wa,Wg) = Z z Z CE?:A”]BHB »@lrﬁAn

(WD (W)
n |
Al MANA MgNg (13)

where the expansion coeﬁicierﬁ:’r:‘*mﬂ”B are given by

2| +12+1

87[2

MaNaAMBNE
als

fdlp J AW T (W)
o (We)F (W, W)

2, +1 25+1 4rsin(m,6¢) 4sin(dyo)
8 8 Ny

My
" sing, dad , (6,) [2° sin 6 g o,
(C)

2, +12,+1,
T 8?  8r?

(14)

Ialg

The absolute coordinate systdmx y, zZ} can be transformed
into the relative coordinate systefWel, Yrel, Ze} by rotations
through the three Euler angles { 7,0, 0). The corresponding
transformations of the rotation matrices appearing in eq 13 are
then

Dy 0 (Pn) = > Do, (& — 1,0, 0) I

mns

(1)

Tin(We) = 3 V(9 = .0, 0 (P

The expansion coefficienty T i eq 8 can be obtained
by substituting the expanS|on fG(IIJA, Wp), eq 13, expressed
in absolute coordinates,(6, ¢, W1, W,) using the above
transformations, into eq 11, which yields

Alrrln;nlmznz Q ( l)m+m1+mz*n1*"2
||1|2(R)
47(2 + 1)( Ik lz)Zég‘;;‘”l(l Ly |2) (15)
m—-m, —m,) s om, —m,

where mm —m,

) is the Wigner 3 symbol. Evaluating eq 12

In our approach, we express the radiation boundary condition ysijng the expansion coefficients, eq 15, yields for the constant

using the constant-flux approximation as introduced by Shoup
et al.® by requiring that the flux is a constant over the angular
ranges in which the reaction can take place,

8

orlr = QF(W, W)

(11)

and that eq 10 is obeyed on the average over the surfaces of

the spheres, that is,

JdQ [d¥, [ dW, F(W,W)Q=
% [dQ [ dw, [ dW,F(¥, We)e(R, 0, ¢, W, W) (12)

where we have introduced the abbreviatjodQ = f sin 6 do
J do.

To proceed, we expresyWa,Ws) in absolute coordinates.
First, we expand=(Wa,Ws) in terms of rotation matrices,

Q

D fi,(R) 2,+12,+1
Q=cCy@, X |—ag— 477:(2|+1)—
Kk gz i Ay (R 2
+y +|1

n=—li| m=— |]_

8
21-1
m)] ] (16)
where we have introduced
3= [dQ [d¥, [d¥,F(¥,, W)=

(47)%0¢, Oxo(1 — cos62)(1 — cosh?) (17)

ad/(4m x 872 x 872 is the fraction of angular orientational
space over which the reaction can occur. In deriving egs 15
and 16, we have made use of the identfies
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2+1
Ar

Y0, ¢) = Do, 0, 0)
8.7'[2

‘",l *
f dv & '%‘1" 2|l + 16|1|26m1mzé”1n2

(WD (W) =

S aw ,@'1 (tp)( (‘P)w n(P) =

8Jr2(|1 1 |3)(|1 1 Is)
m, M, M/\Ny Ny N3

Lo
2+ 1 %

I
I1 |2 |3 I1 |2 |3

&l

The diffusion-controlled rate constant is given by

1 RD
T@ G
(18)

Because the functiorig,,(r), defined in eq 9, obey the recursion
relation

1 RD
——/dQ [ d¥, fd‘Pzar

o = @797 G

£, (1) =2F3,(0) = Ef gy, () (19)

T ||1|2

the final expression for the diffusion-controlled rate constant,
eq 18, becomes

koc = D(Ray/87%)? x

K k€
- R X
K a2 IKI+l/2(§’k) — & Ki +3/2(§*)
2,+12,+1 [ il
472 + 1)— > Cth L) (0
87°  87° nTu\me,
with & = R
3. Results

3.1. Limiting Cases. 3.1.1. Axially Symmetric React
Patches.ZholP presented an analytical expression for the

Schlosshauer and Baker
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Figure 2. Diffusion-controlled ¢ — ) relative association rate
constankoc* = kod/47DR, with koc computed from eq 20, as a function
of the angular constrainb, = 65 = 65 = d¢o = dyo (solid curve).
Also shown is the rate expected from a simple probabilistic argument,
koc = @o(1 — cosbg)%/4n? (geometric rate; dashed curve).
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3.1.2. Uniform Reactity. If we assume that one sphere is
uniformly reactive and the other has an axially symmetric patch
(that is,d0¢g = Oyo = w and 93 = ), we arrive at the model
introduced by 8lc and Stockmayet Then, sinced3 = z and
/5 sin 6 dd P(cosH) = 0 if | = 0, only the terml, = 0 (and
hencel = |;) gives a nonzero contribution to the sum in eq 21.
Then eq 21 reduces to

koc = 2 DRA(1 — cos6%)® x
(I + 172)K 1 4/(E%)
(1 — cos#?) — RZ
K1 12(E%) — E¥Ki13E%)

-1

(/™ sing, d6, Py(cos,))?

(22)

where nowg* = R[(DP/D)I (I + 1)]*2, which coincides with
the result of 8lc and Stockmayérand Shoup et &

Assuming both spheres to be uniformly reactig,= 63 =
0o = Oy = t, only the terml = |; = I, = 0 contributes, and
hencet* = 0. Becausdy/5(£*)/ E¥Kgp(E¥) — 1 as&* — 0, eq
22 becomes, in the fully diffusion-controlled cage¢ ), kpc
= 4xaDR, which is just the classic Smoluchowski diffusion-
controlled rate constant for two uniformly reactive spheres.

association rate constant of two spherical molecules bearing 3.2. Numerical Evaluation.In the following, we shall assume

axially symmetric patches. In the notation of our model, this

corresponds to settinggo = 0y = o, which makesC =0

in egs 14 and 20, unlesa = n = 0. Using ﬁ00(¢> 9 X) =
oo(¢ 0, x) = Pi(cos 0), wherePi(cos 0) are the Legendre

polynomials, the expression for the rate constant, eq 20, becomegoc”

D
koc = 47DRA(1 — cos62)X(1 — cos#Y)? x [4—(1 —
K

K|+1/2(§*)
1l2 |K|+1/2(§*) - S* K|+3/2(§*)

2+ 1), + 1)@, + 1)( j;"g sin6, do,P, (c0s6,))°

cos62)(1 — cosh) — R

-1
|1y I2)2 21)

08 . 2
(" sin 6 dg P, (cosbg)) (O ¥

which agrees with the solution presented by ZRou.

the reaction to be fully diffusion-controlled (—~ «), and take

the radii of the two spheres to be identida,= R,. Instead of
plotting the absolute value of the association rate con&tt

we introduce the dimensionless relative association rate constant
= kpc/4nDR, which is the ratio of the orientation-
constrained rate constant to the Smoluchowski rate constant for
two uniformly reactive spheres.

The full dependence of the relative association rate constant
on 63, 65, d¢o, anddyo is not easy to display in a single plot.
For simplicity, we set all four parameters equal, and in Figure
2 plot the relative association rag. computed from eq 20 as
a function of this single parameter (referred todg in the
following). For comparison, we also show the relative associa-
tion rate expected from a purely probabilistic argument (geo-
metric rate), given by the fraction of angular orientational space
over which the reaction can occuag/(4r x 872 x 872 =
Do(1 — COSI)0)2/4.7[2.

It is evident from Figure 2 that the difference between the
rate constankpc* and the geometric rate gets more striking as
the angular constrairby becomes more stringent. For instance,
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in the important case of sterically highly specific proteprotein 4. Summary
interactions wher@g will typically range between Sand 15,

the geometric rate is about 2 to 3 orders of magnitude too low,

as compared with the association rate computed from eq 20.

3.3. Comparison against Brownian Dynamics Simulations.

In the Brownian dynamics simulations by Northrup and Erick-
son; protein molecules are modeled as hard spherés-of18

A diffusing in water ¢ = 8.9 x 1074 Ns/n?) at T = 298 K; no
forces are assumed to act between the molecules. The transl
tional and rotational diffusion constants are computed from the
Stokes-Einstein relationdt"s = kgT/677R and D't = kgT/
87nR3, respectively.

Instead of angular constraints, the model uses a contact-base
reaction condition. A set of four distinctly numbered contact
points is mounted on each sphere in a 1¥A17 A square
arrangement on a plane tangential to the surface of the sphere
Reaction is assumed to occur when at least three of the four
contact points are correctly matched and within a maximum
distance of 2 A. ) ) ) ) Acknowledgment. This work was supported by a grant from

We performed numerical simulations to estimate the angles e National Institute of Health.

02, 6%, 0o, anddyo (as defined in our model, see section 2)
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We have presented a general expression for the partially
diffusion-controlled association rate of two molecules where
reaction can occur solely if specified constraints on the mutual
orientation are fulfilled. Our solution goes far beyond previous
treatments in the ability to impose very general, asymmetric
orientational constraints, as needed for instance in a proper
description of the sterically highly specific association of two
proteins.

Because our expression for the rate constant, eq 20, was
derived under the assumption of no forces acting between the
wo molecules, a comparison of measured association rates with

eir theoretical values calculated from eq 20 should reveal the
extent to which long-range interactions contribute to the rate
of intermolecular association. Such an investigation would be
of particular interest in the case of the association of proteins
with small ligands and other proteins.
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