
Sections 5.3: The Fundamental Theorem of Calculus

In this section we consider the problem of calculating definite integrals
explicitly.

1. The Fundamental Theorem of Calculus Part 1

In Section 4.9 we considered the problem of determining antideriva-
tives of a given function. In many cases we were able to determine
antiderivatives by reversing the operation of differentiation. We saw
however that this was not always possible and there were certain func-
tions which we could not determine a formula for an antiderivative.
This does not mean that an antiderivative does not exist, and in fact
provided f(x) is continuous (except at possibly finitely many points),
then we can guarantee that an antiderivative always exists and can be
constructed as follows.

Result 1.1. Suppose that f is continuous on [a, b]. Then

F (x) =

∫ x

a

f(t)dt

is an antiderivative of f(x).

Before we talk about why this defines an antiderivative, we make a few
observations.

(i) The variable x is one of the limits in the integral - the variable
t is a “dummy variable” used to tell us that the function is
defined as the value of an integral.

(ii) To calculate values of F (x), we need to calculate the integral
for a given value of x (which can be done using Riemann sums).

(iii) Since F (x) is an antiderivative of f(x) we have F ′(x) = f(x).
(iv) Any other antiderivative of f(x) will be of the form

∫ x

a

f(t)dt + C

where C is an arbitrary constant.

We illustrate with a couple of examples.

Example 1.2. Define

Si(x) =

∫ x

0

sin (t)

t
dt

(note that even though sin (t)/t is not defined at t = 0, we can define
Si(x) at x = 0 to be Si(0) = 0).

(i) Fill in the following table for the different values of Si(x).

x 0 1 2 3
Si(x) 0 0.937 1.6 1.85
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2

We calculate each of these values using the calculator pro-
gram with 100 subdivisions and using the left hand sum. Note
that we cannot have 0 as our lower limit since sin (t)/t is un-
defined at 0, so instead we use 0.01.

(ii) Calculate the derivatives of the following functions:
(a)

F (x) =

∫ 0

x

sin (t)

t
dt.

We have

F (x) =

∫ 0

x

sin (t)

t
dt = −

∫ x

0

sin (t)

t
dt = −Si(x).

Thus

F ′(x) = −S ′(x) = −

sin (x)

x
by FTC.

(b)

F (x) =

∫ x2

0

sin (t)

t
dt.

We have

F (x) =

∫ x2

0

sin (t)

t
dt = Si(x2).

Thus using the chain rule, we have

F ′(x) = S ′(x2) · 2x =
sin (x2)

x2
· 2x =

2 sin (x2)

x
by FTC.

(c)

F (x) =

∫ x3

x2

sin (t)

t
dt.

We have

F (x) =

∫ x2

x3

sin (t)

t
dt =

∫ 0

x3

sin (t)

t
dt +

∫ x2

0

sin (t)

t
dt

= −

∫ x3

0

sin (t)

t
dt +

∫ x2

0

sin (t)

t
dt = −Si(x3) + Si(x2).

Thus using the chain rule, we have

F ′(x) = −S ′(x3) · 3x2 + Si′(x2) · 2x = −

sin (x3)

x3
· 3x2 +

sin (x2)

x2
· 2x

= −

3 sin (x3)

x
+

2 sin (x2)

x
by FTC.
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Example 1.3. If

F (x) =

∫ sin (x)

2

t2

et
dt

deteremine F ′(x).

Define

G(u) =

∫ u

2

t2

et
dt.

Then we have F (x) = G(sin (x)). Therefore, using the chain rule, we
have

F ′(x) = G′(sin (x)) · cos (x) =
(sin (x))2

esin (x)
· cos (x).

Before we move on, we make an important observation regarding FTC
Part 1.

Remark 1.4. FTC Part 1 is extremely important because it guaran-
tees the existence of antiderivatives of any continuous function, and
even more, it explains exactly how to calculate the values of an anti-
derivative. The reason this is important is because there are many func-
tions for which we cannot write down an antiderivative (algebraically),
but FTC Part 1 does allow us to find an antiderivative (even though
it cannot be written down as an expression).

2. Fundamental Theorem of Calculus Part 2

Recall that our original goal was to determine a way to calculate definite
integrals exactly. FTC Part 1 guarantees the existence of an antideriv-
ative, but it does not tell us how to calculate definite integrals exactly
(indeed, it relies upon being able to calculate a definite integral). We
can however use FTC Part 1 to determine a way to calculate definite
integrals exactly.

Result 2.1. (Fundamental Theorem of Calculus Part 2) If f(x) is
continuous on [a, b] and F (x) is an antiderivative of f(x), then

∫ b

a

f(x)dx = F (b) − F (a).

Proof. This is a simple consequence of FTC Part 1. Specifically, we
know

G(x) =

∫ x

a

f(t)dt

is an antiderivative of f(x). Therefore, if F (x) is any other antideriv-
ative, then F (x) = G(x) + C for some constant C. Then

F (b) − F (a) = G(b) + C − (G(a) + C) = G(b) − G(a)

=

∫ a

b

f(t)dt −

∫ a

a

f(t)dt =

∫ b

a

f(t)dt.
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Specifically,

F (b) − F (a) =

∫ b

a

f(x)dx.

�

This means to calculate the definite integral of a function f(x) over an
interval [a, b], we do the following:

(i) Find some antiderivative F (x).
(ii) Take the difference F (b) − F (a) which is equal to the definite

integral.

Thus the problem of determining the exact value of a definite integral is
equivalent to finding an antiderivative and evaluating it at appropriate
points. We finish by illustrating FTC Part 2 with a couple of examples.

Example 2.2. Evaluate the following definite integrals exactly.

(i)
∫ π

2

0

sin (x)dx.

An antiderivative of sin (x) is − cos (x). Therefore, using
FTC Part 2, we have

∫ π

2

0

sin (x)dx = − cos (x)

∣

∣

∣

∣

π/2

0

= − cos (
π

2
) − (− cos (0)) = 1.

(ii)
∫ 1

0

exdx.

An antiderivative of ex is ex. Therefore, using FTC Part 2,
we have

∫ 1

0

exdx = ex

∣

∣

∣

∣

1

0

= e − e0 = e − 1.

(iii)
∫ 2

0

(x2
− 2x)dx.

An antiderivative of x2
− 2x is x3/3 − x2. Therefore, using

FTC Part 2, we have
∫ 2

0

(x2
− 2x)dx =

x3

3
− x2

∣

∣

∣

∣

2

0

= (
8

3
− 4) − 0 = −

4

3
.

Example 2.3. Is
∫ 1

−1

1

x
dx = 0?
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No - we cannot apply FTC Part 2 since the function f(x) = 1/x is not
continuous on the interval [−1, 1].


