In this section, we develop other results from Calculus in the Cartesian plane to Calculus using polar coordinates.

1. Area

Before we develop calculus for polar coordinates, we need to review a couple of formulas for basic trigonometry.

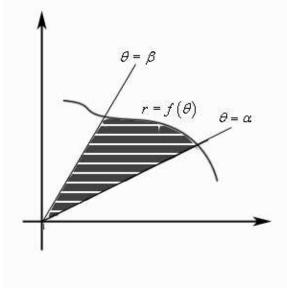
Result 1.1. Suppose S is a sector of a circle of radius R and angle ϑ (measured in radians). Then the area of S is given by the formula $A = r^2 \vartheta/2$.

Proof. Observe that the number of radians in a whole circle is 2π and the area of a circle of radius r is πr^2 . A sector with angle ϑ represents a fraction of a circle, so the ratio of the area of a segment and the whole circle will be equal to the ratio of the whole angle in a circle and the angle of the segment: $\pi r^2 = 2\pi$

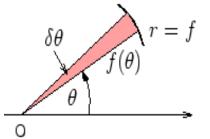
Solving, we get

$$\frac{\overline{A}}{A} - \frac{\overline{\vartheta}}{\vartheta}.$$
$$A = \frac{1}{2}r^2\vartheta.$$

We shall now work out how to find the area of a region given in polar
coordinates. Suppose we are given a region like the one illustrated be-
low (so a function of the form $r = f(\vartheta)$ where the radius depends upon
the angle). To calculate the area of this section, we do the following:



(i) Break up the region into small segments with equal sized interior angles of size $\Delta \vartheta$ as illustrated below:



(*ii*) Observe that for small $\Delta \vartheta$, these segments are approximately segments of circles. This means the area can be approximated by the formula $r^2 \vartheta/2$ where r is the radius. Observe however that at any point ϑ , the radius is $f(\vartheta)$, so the area can be approximated by

$$\frac{f(\vartheta)^2 \Delta \vartheta}{2}.$$

(iii) Adding up all the segments, we can approximate the whole area by the sum

$$\sum_{i=1}^{n} \frac{f(\vartheta)^2 \Delta \vartheta}{2}$$

(*iv*) Taking smaller and smaller subdivisions, this sum gets closer to the actual answer. But this is a Riemann sum, so we get:

Result 1.2. The area of a region R bounded by a polar function between $\vartheta = \alpha$ and $\vartheta = \beta$ is given by the integral

$$\int_{\alpha}^{\beta} \frac{[f(\vartheta)]^2}{2} d\vartheta.$$

To illustrate, we look at a number of examples.

Example 1.3. Recall that calculating the area of a circle using Cartesian coordinates was very complicated - it involved a complicated trig substitution and then trig identities to simplify to something we can integrate. We shall show how easy it becomes using polar coordinates instead. If C is a circle of radius R, then its polar equation is $f(\vartheta) = R$ where $0 \leq \vartheta \leq 2\pi$. Thus its area will be

$$\int_{0}^{2\pi} \frac{R^2}{2} d\vartheta = \frac{R^2}{2} x \Big|_{0}^{2\pi} = \pi R^2$$

Example 1.4. Find the area of one of the petals in the eight leafed rose given by $f(\vartheta) = \sin(4\vartheta)$.

In order to calculate this, we first need to find out the limits on ϑ . One leaf occurs when r oscillates from 0 back to 0. The first time r = 0 is

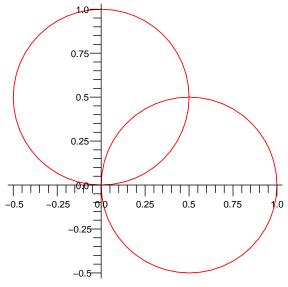
 $\mathbf{2}$

when $\vartheta = 0$, and the second time is when $\vartheta = \pi/4$. Thus the area will be

$$\int_0^{\pi/4} \frac{\sin^2(4\vartheta)}{2} d\vartheta = \int_0^{\pi/4} \frac{1 - \cos(8\vartheta)}{4} dx = \frac{1}{8} \left[\vartheta - \frac{\sin(8\vartheta)}{8} \right]_0^{\pi/4} = \frac{\pi}{16}.$$

Example 1.5. Find the area of the region bounded between $r = \sin(\vartheta)$ and $r = \cos(\vartheta)$.

Before we try to calculate an area, we sketch the graph to give us an idea of what to look for.



Observe that until the value $\vartheta = \pi/4$, the radius function is given by $f(\vartheta) = \sin(\vartheta)$. Then between $\pi/4$ and $\pi/2$, the radius function is given by $f(\vartheta = \cos(\vartheta)$. Thus the total area will be

$$\int_{0}^{\pi/4} \frac{\sin^{2}(\vartheta)}{2} d\vartheta + \int_{\pi/4}^{\pi/2} \frac{\cos^{2}(\vartheta)}{2} d\vartheta = \frac{1}{2} \left[\vartheta - \frac{\sin(2\vartheta)}{2} \right]_{0}^{\pi/4} + \frac{1}{2} \left[\vartheta + \frac{\sin(2\vartheta)}{2} \right]_{\pi/4}^{\pi/2}$$
$$= \frac{1}{2} \left[\frac{\pi}{4} - \frac{1}{2} \right] + \frac{1}{2} \left[\frac{\pi}{2} + 0 - \frac{\pi}{4} - \frac{1}{2} \right] = \frac{1}{2} \left[\frac{\pi}{4} - \frac{1}{2} \right] + \frac{1}{2} \left[\frac{\pi}{4} + \frac{1}{2} \right] = \frac{\pi}{4}.$$
$$2. \text{ Arc Length}$$

We can also modify the arc length formula so we can find arclengths of polar functions. Specifically, if we assume that $r = f(\vartheta)$, then we have $x = f(\vartheta) \cos(\vartheta)$ and $y = f(\vartheta) \sin(\vartheta)$, so they can both be considered as parametric equations in ϑ . Observe that

$$dx/dt = f'(\vartheta)\cos(\vartheta) - f(\vartheta)\sin(\vartheta)$$

and

$$dy/dt = f'(\vartheta)\sin(\vartheta) + f(\vartheta)\cos(\vartheta).$$

Thus

$$(dx/dt)^2 + (dy/dt)^2 = (f'(\vartheta)\cos(\vartheta) - f(\vartheta)\sin(\vartheta))^2 + (f'(\vartheta)\sin(\vartheta) + f(\vartheta)\cos(\vartheta))^2$$

$$= (f'(\vartheta))^2 \cos^2(\vartheta) - 2f(\vartheta)f'(\vartheta)\cos(\vartheta)\sin(\vartheta) + (f(\vartheta))^2 \sin^2(\vartheta) + (f'(\vartheta))^2 \sin^2(\vartheta) + 2f(\vartheta)f'(\vartheta)\cos(\vartheta)\sin(\vartheta) + (f(\vartheta))^2 \cos^2(\vartheta) = (f(\vartheta))^2 + (f'(\vartheta))^2.$$

Then using the parametric arclength formula we get:

Result 2.1. The length of a curve with polar equation $r = f(\vartheta)$ with $\alpha \leq \vartheta \leq \beta$ is

$$\int_{\alpha}^{\beta} \sqrt{(f(\vartheta))^2 + (f'(\vartheta))^2} dt.$$

We illustrate with an example.

Example 2.2. Find the arclength of the region bounded between $r = \cos(\vartheta)$ and $r = \sin(\vartheta)$.

This is the graph we considered for the last example. We observe that it follows $f(\vartheta) = \sin(\vartheta)$ for $0 \leq \vartheta \leq \pi/4$ and $g(\vartheta) = \cos(\vartheta)$ for $\pi/4 \leq \vartheta \leq \pi/2$. We also observe that $f'(\vartheta) = \cos(\vartheta)$ and $g'(\vartheta) = -\sin(\vartheta)$, so

$$\int_{0}^{\pi/4} \sqrt{(f(\vartheta))^{2} + (f'(\vartheta))^{2}} dt + \int_{\pi/4}^{\pi/2} \sqrt{(g(\vartheta))^{2} + (g'(\vartheta))^{2}} dt$$
$$= \int_{0}^{\pi/4} 1 d\vartheta + \int_{\pi/4}^{\pi/2} 1 d\vartheta = \frac{\pi}{2}$$

4