
Section 11.1: Sequences

In this section, we shall study something of which is conceptually simple
mathematically, but has far reaching results in so many different areas
of mathematics - sequences.

1. The Definition of a Sequence and Examples

We start with the definition of a sequence.

Definition 1.1. A sequence is an infinite succession of numbers

a1, a2, a3, . . .

written in a specificied order. The term a1 is called the first term, the
term a2 is called the second term, and in general, the term an is called
the nth term.

There are many different ways to represent and construct sequences.

(i) We could write the nth term of a sequence as an expression in
n (so a sequence can be realized as a function from the positive
integers to the real numbers where the image of n is an).

(ii) We could write an expression for a sequence as a function
of prior terms (this is sometimes referred to as a ”recursive”
sequence).

(iii) Some times there is no nice way to represent a sequence be-
cause there is no pattern which illustrates the terms of the
sequence.

To illustrate, we look at some examples.

Example 1.2. (i) We define a sequence as an = n. This se-
quence will consist of the integers written in consecutive order
{1, 2, 3, 4, . . .}.

(ii) We can define an interesting sequence as follows,

an = nth decimal place in the decimal expansion of π.

Observe that there is no nice way of writing down this sequence
as a function or recursive sequence.

(iii) We can define the recursive sequence a1 = 1, a2 = 1 and for
n > 2 we define an = an−1 + an−2. The first few terms are:
{1, 1, 2, 3, 5, 8, 13, . . .}. This sequence is called the Fibonacci
sequence and arises in many strange natural and physical sit-
uations.

Our main interest are sequences that can be described through the
use of recursion or a formula - it is sequences like these which we can
determine most information about. This means that the process of
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finding a formula is very important when examining sequences. We
look at a couple of examples.

Example 1.3. Find formulas for the following sequences (ei-
ther recursive or as a function of n).

(i)
{1, 4, 9, 16, 25, 36, . . .}.

Observe that this sequence is the ascending list of squares
of integers. Therefore, a formula will be an = n2.

(ii)

{1,−
1

2
,
1

4
,−

1

8
, . . .}.

In this case, the sequence is changing from positive to neg-
ative and the denominator is ascending power of 2. Therefore
a formula will be

an = (−1)n+1 1

2n
.

(iii)

{
1

2
,
3

4
,
5

6
,
7

8
, . . . }.

The numerator is running over consecutive odd numbers and
the denominator is running over consecutive even numbers.
Thus we have

an =
2n − 1

2n
.

(iv)
{1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1 . . .}.

This function does not look like it can be described nicely
as a function of n. Therefore, we try to define it recursively.
Notice that,

a1 = 1

a2 = 0

a3 = a2 − a1 = −1

a4 = a3 − a2 = −1 − 0 = −1

a5 = a4 − a3 = −1 − (−1) = 0

a6 = a5 − a4 = 0 − (−1) = 1

a7 = a6 − a5 = 1 − 0 = 1

a8 = a7 − a6 = 1 − 1 = 0

a9 = a8 − a7 = 0 − 1 = −1

a10 = a9 − a8 = −1 − 0 = −1

a11 = −1 − (−1) = 0

so the sequence will be a1 = 0, a2 = 1 and an = an−1 − an−2

for n > 2.
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Since a sequence is a function whose domain is the positive integers,
we can construct the graph of {an}. Observe that the graph will not

be continuous, but will be discrete (WHY?). We consider an example.

Example 1.4. Draw the graph of the sequence

an =
2n − 1

2n
and use it to guess what the limit of the sequence is as n gets large.
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Observe that the values of the sequence are getting closer to 1 as n gets
larger, so we would guess the limit to be 1.

2. Limits of Sequences

As we with the last example, given a sequence, we may want to describe
the long term behavior of the sequence, or equivalently, the behavior
of the sequence as we allow n → ∞. We formalize this idea as follows:

Definition 2.1. A sequence {an} has limit L and we write

lim
n→∞

an = L

or
an → L as n → ∞

if we can make the terms of an as close to L as we like by taking n
sufficiently large. If L exists, we say the sequence converges with limit
L. Otherwise we say the limit diverges.

As we saw with the example, we could try to use the graph to determine
the limit. Every sequence an is defined as some function of n, so every
point of an lies on the graph of f(x) where f(n) = an. This means that
the function f(x) associated to the sequence an will have the same
limit, so we get the following:

Result 2.2. If limn→∞ f(x) = L and f(n) = an, then limn→∞ an = L.

Example 2.3. Find the limit of the sequence

an =
(2n2 + 1)(3n − 1)

5n3 − 2
.
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Observe that if

f(x) =
(2x2 + 1)(3x − 1)

5x3 − 2
then f(n) = an, so we can simply evaluate the limit

lim
x→∞

f(x) =
6

5
.

If the limit of a sequence does not exist, then it is said to diverge.
However, there are many different types of divergence. One important
type of divergence is when a sequence grows without bound (when the
limit of the sequence is ”∞”). We formalize:

Definition 2.4. We say the limit of the sequence an is ∞ and write
limn→∞ an = ∞ if for every number M there is an N such that an > M
for all n > N .

Example 2.5. Show that the sequence an = n is ∞ using the defini-
tion.
We need to show that for any value M , we can find an N such that for
all n > N , an > M . But we can just choose N to be the integer closet,
but larger, than M . Then an = n > N > M .

Limits have already been studied extensively (remember Calc 1), so
it would be more efficient to try to use what we already know than
develop lots of new rules. As we observed above, a sequence agrees
with some function f(x) at the integer points, so to find the limit of a
sequence, we can use all the rules of limits we know for functions.

Result 2.6. (See Page 705 for details) If {an} and {bn} are convergent
sequences and c is constant, then

(i) limn→∞(an + bn) = limn→∞ an + limn→∞ bn

(ii) limn→∞(an − bn) = limn→∞ an − limn→∞ bn

(iii) limn→∞(can) = c limn→∞ an

(iv) limn→∞(anbn) = (limn→∞ an)(limn→∞ bn)
(v) limn→∞(an/bn) = (limn→∞ an)/(limn→∞ bn)
(vi) limn→∞ ap

n = (limn→∞ an)p

We also have the squeeze theorem:

Result 2.7. If an 6 bn 6 cn and limn→∞ an = L and limn→∞ cn = L,
then limn→∞ bn = L.

We also have the following intuitive result:

Result 2.8. If limn→∞ |an| = 0, then limn→∞ an = 0.

To illustrate how to use these results, we shall look at some examples.

Example 2.9. Determine which of the following sequences converge
and then find the limits if they exist.
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(i) an = n(n − 1)
The associated function to this sequence is f(x) = x(x− 1)

which grows without bound as x → ∞. Thus the sequence an

diverges to ∞.
(ii)

(−1)n−1n

n2 + 1

Observe that
∣

∣

∣

∣

(−1)n−1n

n2 + 1

∣

∣

∣

∣

=
n

n2 + 1
→ 0

so it follows that an → 0.
(iii) an = cos(n)

Observe that the function f(x) = cos(x) oscillates between
−1 and 1, so it seems reasonable that cos(x) should not con-
verge. To see it does not converge, we note that we can always
find values ”close” to 1 and ”close” to 0. To get numbers
”close” to 1, we can take the integer values of 10kπ by drop-
ping off all the decimals. As we take larger and larger values
of k, this will approximate 10kπ better and better, so the value
will get closer to 1. To get a number close to 0, we can take
the integer values of (10k − 1)(π/2) by dropping off all deci-
mal places. As we take larger and larger values of k, this will
approximate (10k − 1)π/2 better and better, so the value will
get closer to 0.

(iv) cos(2πx)
In this case, the fact that the corresponding function oscil-

lates seems to suggest that this function should diverge as the
last function did. Observe however that f(n) = cos(2nπ) = 1
for all integers n. In particular, it converges to 1. This shows
that similar sequences can have very different divergence prop-
erties.

(v) an = cos(1/n)
Observe that as n → ∞, 1/n → 0, so it follows that

limn→∞ cos(1/n) = cos(0) = 1.
(vi) an = n2e−n

Observe in this case the corresponding function is

f(x) =
n2

ex
.

Using L’hopitals rule (type ∞/∞), we get

lim
x→∞

n2

ex
= lim

x→∞

2n

ex
= lim

x→∞

2

ex
= 0

so limn→∞ an = 0.



6

(vii)
ln(n)

ln(2n)
In this case,

lim
x→∞

ln(x)

ln(2x)
= lim

x→∞

ln(x)

ln(2) + ln(x)
= lim

x→∞

1
ln(2)
ln(x)

+ 1
= 1

so limn→∞ an = 1.

Example 2.10. For what values of r does the sequence an = rn con-
verge?
Observe that if r = 1 then the sequence an = 1n converges to 1. If
an = (−1)n, then it oscillates between −1 and 1 so will never converge.
If |r| > 1, then |rn| → ∞, so the sequence diverges. If |r| < 1, then
|rn| → 0¡ so the sequence converges. Thus we get an = rn converges if
and only if −1 < r 6 1.

There are certain types of sequences for which it is fairly easy to de-
termine convergence or divergence.

Definition 2.11. A sequence an is called increasing if an < an+1 for all
n > 1 and decreasing if an < an+1 for all n > 1. It is called monotonic
if it is either increasing or decreasing.

Determining whether a monotonic sequence converges is fairly easy. To
do this, we need the following definition.

Definition 2.12. A sequence an is bounded above if there is a number
M such that an 6 M for all n > 1. It is bounded below if an > M for
all n > 1. If it is bounded above and below, then {an} is a bounded
sequence.

Observe that if a sequence is monotonic increasing and it converges,
there must be a largest possible value (that it, it must be bounded
above). Alternatively, if an is monotonic increasing but is not bounded
from above, then the values will keep getting larger, so the sequence
will not converge. Similar observations can be made about monotonic
decreasing function, so we obtain the following nice result.

Result 2.13. Every bounded monotonic sequence converges.

Observe that it must be monotonic (since an = cos(n) is bounded but
not convergent, but it is not monotonic). We finish with an example.

Example 2.14. Is the sequence an = n + 1/n monotonic? Does it
converge?
It is monotonic because if f(x) = x + 1/x, then f ′(x) = 1 − 1/x2 > 0
for x > 0 (so it is an increasing function, and so the sequence an is
increasing). It diverges because an + 1/n > n which diverges.


