
Section 11.10: Taylor and Maclaurin Series

1. Taylor and Maclaurin Series Definitions

In this section, we consider a way to represent all functions which are
”sufficiently nice” around some point. By ”sufficiently nice”, we mean
that every possible derivative of f(x) exists. Rather than referring to
it as such, we use the following definition:

Definition 1.1. We call a function Cn if it is differentiable at least
n-times (so the nthe derivative exists). We call it C∞ if every possible
derivative exists.

In Calculus 1, we used linear approximation to approximate the value
of a function at a point. This is a very good approximation if the
graph does not admit too much curvature, but it can cause problems
if the graph curves a lot. Therefore, instead of approximating by a
linear function, we can approximate by a polynomial (the next easiest
type of function to do Calculus on). Of course, the higher the degree
of the polynomial we are approximating by, the closer we expect the
approximation to be, so the best approximation of a function by a
polynomial is when it can be represented as a power series. Therefore,
suppose that f(x) can be represented by a power series:

f(x) =
∑

cn(x − a)n.

Question 1.2. What do the coefficients of this power series tell us
about f(x)?

• First observe that f(a) = c0, so the constant term and the
value of f at x = a agree.

• Next,

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + . . .

so f ′(a) = c1 so the coefficient of the linear term and the first
derivative of f at x = a agree.

• Next,

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + . . .

so f ′(a) = c1 so the coefficient of the linear term and the first
derivative of f at x = a agree.

• Next,

f ′′(x) = 2c2 +3∗2∗ c3(x−a)+4∗3∗ c4(x−a)2 +5∗4∗ c5(x−a)3 + . . .

so f ′′(a) = 2c2 so the second derivative of f at x = a is 2!
times the coefficient of the quadratic term.
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• Next,

f ′′′(x) = 3 ∗ 2 ∗ c3 + 4 ∗ 3 ∗ 2c4(x − a) + 5 ∗ 4 ∗ 3c5(x − a)2 + . . .

so f ′′′(a) = 3 ∗ 2c3 so the third derivative of f at x = a is 3!
times the coefficient of the cubic term.

• Next,

f (4)(x) = 4 ∗ 3 ∗ 2 ∗ c4 + 5 ∗ 4 ∗ 3 ∗ 2c5(x − a)2 + . . .

so f (4)(a) = 4 ∗ 3 ∗ 2c4 so the fourth derivative of f at x = a is
4! times the coefficient of the quadratic term.

Continuing in this fashion, we get that if f(x) can be represented as
a power series, then the nth derivative of the function f(x) will be n!
times the coefficient of the nth term in the power series. Alternatively,
if f(x) can be represented as a power series around x = a, the nth
coefficient will be equal to the nth derivative of f(x) at x = a divided
by n!. We summarize.

Result 1.3. If f has a power series representation at x = a, so

f(x) =
∑

cn(x − a)n |x − a| < R

then its coefficients are given by the formula

cn =
f (n)(x)

n!
.

This means that if a function can be represented by a power series at
x = a, then it has the form:

∑ fn(a)

n!
(x − a)n.

This motivates the following definitions.

Definition 1.4. If f(x) is a C∞ function, we call the power series

∑ fn(a)

n!
(x − a)n

the Taylor series for f(x) around x = a. In the special case when a = 0,
we call the Taylor series

∑ fn(a)

n!
xn

the Maclaurin series.

In general, given a C∞ function f(x), we can always construct its
Taylor series around x = a. This lead to the natural question of when
a Taylor series of a function agrees with the function. This is a fairly
complicated problem - there are functions for which the Taylor series
only agrees with the function at the point x = a. A complete answer to
this question is beyond this course - we shall just accept the following
answer:
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Result 1.5. Suppose

TN (x) =
N

∑

n=0

fn(a)

n!
(x − a)n

is the Nth Taylor polynomial of f(x) around x = a and

RN (x) =

∞
∑

N+1

fn(a)

n!
(x − a)n

is the rest of the sum. If limN→∞ RN (x) = 0 for |x− a| < R, then f is
equal to its Taylor series on the interval |x − a| < R.

This result basically says that provided the latter part of the Taylor
sum goes to 0, then the Taylor series of a function is equal to the
function on its interval of convergence. Most of the Taylor series we
shall be considering will be equal to the corresponding functions. We
shall look at the classic functions where the Taylor series is equal to
the function on its whole interval of convergence.

Example 1.6. Find the Maclaurin Series of the following functions:

(i) f(x) = ex

We need to find an expression for the nth derivative. Ob-
serve that f(0) = 1, f ′(x) = ex, so f ′(0) = 1. Likewise, for any
integer n, we have f (n)(x) = ex so f (n)(0) = 1. This means the
Taylor series for f(x) = ex will be

∑ xn

n!
.

This power series converges for all x, so we have

ex =
∑ xn

n!

for all values of x.
(ii)

f(x) =
1

1 − x

Observe that this is the sum formula for a geometric series, so
the Taylor series around x = 0 will be

∑

xn.

This power series converges for x in (−1, 1), so we have

1

1 − x
=

∑

xn

provided |x| < 1.
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(iii) f(x) = sin (x) In this case we have f(0) = 0, f ′(0) = cos(0) =
1, f ′′(0) = − sin(0) = 0, f ′′′(0) = − cos(0) = −1, f (4)(0) =
sin(0) = 0, and the series keeps repeating after this. We ob-
serve the following:

• every even term is zero
• every other odd term is negative
This suggests that the series will be

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1.

This power series converges for all x, so we have

sin (x) =
∞

∑

n=0

(−1)n

(2n + 1)!
x2n+1

for all values of x.
(iv) f(x) = cos (x)

In this case we have f(0) = 1, f ′(0) = − sin(0) = 0, f ′′(0) =
− cos(0) = −1, f ′′′(0) = − sin(0) = 0, f (4)(0) = cos(0) =
1, and the series keeps repeating after this. We observe the
following:

• every odd term is zero
• every other even term is negative
This suggests that the series will be

∞
∑

n=0

(−1)n

(2n)!
x2n.

This power series converges for all x, so we have

cos (x) =

∞
∑

n=0

(−1)n

(2n)!
x2n

for all values of x.
(v) f(x) = arctan (x)

We know that

d

dx
arctan (x) =

1

1 + x2
=

∞
∑

n=0

(−1)nx2n

so

arctan(x) =
∑

(−1)n
x2n+1

2n + 1
.

This power series converges for x in (−1, 1], so we have

arctan(x) =
∑

(−1)n
x2n+1

2n + 1

provided |x| < 1 or x = 1.
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2. Applications of Taylor and Maclaurin Series

Taylor series have many applications, but one important one we can
understand is that of approximating irrational numbers. We illustrate
with some examples.

Example 2.1. (i) Approximate the value of e using Taylor series.
We observe that

ex =
∑ xn

n!

for all x, so in particular

e = e1 =
∑ 1

n!
.

Therefore, the value for e can be approximated by taking par-
tial sums of this series. Obviously, the more terms we take in
the partial sum, the closer we will get to the values. Taking
N = 10, we get

e ∼ 1/1! + 1/2! + · · ·+ 1/10! ∼ 2.71828

and on the calculator we get e ∼ 2.718282, so the 10th partial
sum is very close.

(ii) Approximate the value of π using Taylor series.
We observe that arctan (1) = π/4, or π = 4 arctan (1). Also,

on the interval (−1, 1], we have

arctan (x) =
∑

(−1)n
x2n+1

2n + 1
,

so it follows that π can be approximated by taking partial
sums of

4
∑

(−1)n
1

2n + 1
.

Obviously, the more terms we take in the partial sum, the
closer we will get to the values. Taking N = 100, we get

π ∼ 4(1 − 1/3 + 1/5 · · · − 1/19) ∼ 4 ∗ (0.787873) = 3.151492

which is within 1 decimal place. Taking N = 1000, we get

π ∼ 4(1 − 1/3 + 1/5 · · · − 1/19) ∼ 4 ∗ (0.785648) = 3.142592

which is within 2 decimal places of the actual answer. In gen-
eral, to estimate the value of π, we can take larger and larger
partial sums (this is one of the ways they do this!!!!)

Taylor series can also be used to study functions which we know exist
but do not have a way of writing them down.
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Example 2.2. Recall that the function

f(x) =
sin (x)

x

does not have an algebraic antiderivative (try as you may, the TI89 will
not give you an answer). However, we can use Taylor series to come
up with a power series representation of its antiderivative. Since

sin (x) =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

for all values of x, we will have

sin (x)

x
=

1

x

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1 =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n

provided x 6= 0. Thus

∫

sin (x)

x
dx =

∫ ∞
∑

n=0

(−1)n

(2n + 1)!
x2ndx = C+

∞
∑

n=0

(−1)n

(2n + 1)(2n + 1)!
x2n+1.

Observe that in order to multiply the series

∞
∑

n=0

(−1)n

(2n + 1)!
x2n

by 1/x we simply multiplied each term by 1/x. In general, provided
two power series converge, we can perform all the standard algebraic
operations on them such as multiplication, composition, etc. This al-
lows us to construct power series for many other functions than the
standard few we have derived.

Example 2.3. Find the first few terms for a power series representa-
tion for the following functions:

(i)

f(x) = x2e−x

We have

ex =
∑ xn

n!
so

e−x =
∑

(−1)n
xn

n!
.

This means that

x2e−x = x2
∑

(−1)n
xn

n!
=

∑

(−1)n
xn+2

n!
.
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(ii) ex sin (x) Here we have

ex sin (x) =

(

1 + x +
x2

2!
+

x3

3!
+ . . .

)(

x −
x3

3!
+ . . .

)

= x −
x3

6
+ x(x −

x3

6
) +

x2

2
(x −

x3

6
) + . . .

= x + x2 +
x3

3
+ . . .

For fun, we look at one more example of explicitly finding a Taylor
series.

Example 2.4. Find the Taylor series of

f(x) =
1

x
about x = 1.
First we must find a general term for the nth derivative. Observe that
f(1) = 1, f ′(x) = − 1

x2 , so f ′(1) = −1, f ′′(x) = 2
x3 , so f ′′(1) = 2,

f ′′′(x) = −2∗3
x4 , so f ′′′(1) = −2 ∗ 3, f (4)(x) = 2∗3∗4

x5 , so f (4)(1) = 2 ∗ 3 ∗ 4.
In general, it looks like the nth derivative will have the form

fn(1) = (−1)nn!

This means the Taylor series for f(x) = 1/x around x = 1 will be
∑

(−1)n(x − 1)n.

Observe that we could have obtained this formula by substituting 1−x
in for x in the expansion for 1/(1 − x).


