
Section 11.2: Series

In this section, we shall examine one of the most important things we
can do with sequences - adding up their the terms. Amongst other
things, Riemann sums are an example of some series - in a Riemann
sum, we add up ”infinitely many” strips of area to estimate area under
a graph. We shall be looking at much more general series.

1. The Definition of a Series and Convergence

We start with a definition.

Definition 1.1. If an is a sequence, we can add up all the terms a1 +
a2 + . . . . We call this sum an infinite series (or series for short) and we
denote it by

∞
∑

i=1

an

or
∑

an.

The natural question to ask is what the value of this sum is. The
problem of course is that this sum is of an infinite number of things, so
it seems counterintuitive that it should even have a sum which is not
infinite. Of course, we already know that there are lots of infinite sums
which do have finite sums (take a Riemann sum for example). So we
need to determine a way to show whether or not an infinite sum sums
to a finite number and then how to find out what this finite number is.
For this, we do the following:

(i) Suppose an is a sequence. Denote by SN the sum of the first
N terms. So

SN =

N
∑

i=1

an.

We call SN the Nth partial sum of the series
∑

an.

(ii) Observe that the set of partial sums forms a sequence: that
is S1, S2, S3, . . . , form a sequence of numbers (every sum is
finite, so they can be calculated).

(iii) If the infinite sum
∑

an

exists and is equal to L, then

lim
N→∞

SN = L
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(the partial sums must get closer to L as N gets larger). Like-
wise, if

lim
N→∞

SN = L,

it means that the more terms we add, the closer we get to L.
(iv) With this in mind, we say that a series

∑

an

converges to L if the sequence of partial sum SN converges to
L, so

lim
N→∞

SN = L.

Under these circumstances, we say that the series is convergent
and we write

∑

an = a1 + . . . an + · · · = L

and say that L is the sum of this series. If the series does not
converge, we say it diverges.

We look at a couple of easy examples.

Example 1.2. (i) Find S5 S6 and S6 − S5 of the series
∑ n

n + 1
.

S5 =
1

2
+

2

3
+

3

4
+

4

5
+

5

6

S6 =
1

2
+

2

3
+

3

4
+

4

5
+

5

6
+

6

7

S6 − S5 =
1

2
+

2

3
+

3

4
+

4

5
+

5

6
−

(

1

2
+

2

3
+

3

4
+

4

5
+

5

6
+

6

7

)

=
6

7

(ii) Does the series
∑ n

n + 1

seem to converge? Why or why not?
Observe that

lim
N→∞

SN+1 − SN = lim
N→∞

N + 1

N + 2
= 1.

This means that after a certain point, we shall keep adding
numbers to our series very close to 1. This suggests that the
series cannot possibly converge.
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2. Basic Rules of Convergence

To determine whether or not a series converges, we need to consider the
corresponding sequence of partial sums (so this requires a thorough

knowledge of sequences). As the previous example suggests, there are
some fairly obvious restrictions which must be true of convergent se-
quences.

Result 2.1. Suppose
∑

an

converges. Then

lim
n→∞

an = 0.

Proof. Suppose that
∑

an converges to L. Observe that

lim
N→∞

aN = lim
N→∞

SN − SN−1.

This means

lim
N→∞

aN = lim
N→∞

SN − lim
N→∞

SN−1 = L − L = 0.

�

In particular, this result implies the following important test for di-

vergence.

Result 2.2. If

lim
n→∞

an 6= 0

or does not exist, then the series
∑

an

diverges.

Since series are determined using a sequence of partial sums, its seems
that the limit laws we developed for sequences should also hold. These
laws are:

Result 2.3. If
∑

an and
∑

bn are convergent series and c is a constant,
then the series

∑

can,
∑

(an + bn) and
∑

(an − bn) are also convergent
and

(i)
∑

can = c
∑

an

(ii)
∑

(an + bn) =
∑

an +
∑

bn

(iii)
∑

(an − bn) =
∑

an −
∑

bn
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We need to be careful with this example - it requires that an and bn

are convergent. For example, we could not take
∑

1 and
∑

1, which
are both divergent series and find

∑

(1 − 1) =
∑

0 = 0 =
∑

1 −
∑

1

because the left hand side does not make sense (since neither of the
series diverge).

3. Examples

To illustrate our observations, we look at some examples.

Example 3.1. Determine, with reasons, which of the following are
convergent series. When convergent, find the sum if possible.

(i)
∑ 1

n
(This is a special series called the harmonic series).

Observe that lim an = 0, so we cannot immediately conclude
that this sum diverges. Instead we shall look at the partial
sums to see if we can see a pattern. Observe that

S1 = 1

S2 = 1 +
1

2

S4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 2

S8 = 1+
1

2
+(

1

3
+

1

4
)+(

1

5
+

1

6
+

1

7
+

1

8
) > 1+

1

2
+(

1

4
+

1

4
)+(

1

8
+

1

8
+

1

8
+

1

8
) = 2

1

2
If we continue this process, we see that if we take the sum S2n

we get

S2n > 1 + n
1

2
for every possible n. This means that the sum grows without
bound and hence the sum cannot converge.

(ii)
∑ 2

n2 − 1
(This is a special series called a telescopic series).

Observe that
∞

∑

n=2

2

n2 − 1
=

∑

(
1

n − 1
−

1

n + 1
).

If we evaluate the Nth partial sum, we get

(1−
1

3
)+(

1

2
−

1

4
)+(

1

3
−

1

5
)+(

1

4
−

1

6
)+· · ·+(

1

N − 2
−

1

N
)+(

1

N − 1
−

1

N + 1
)
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= 1 +
1

2
−

1

N
−

1

N − 1

Letting N → ∞, we get

lim
N→∞

SN = 1 +
1

2

so the series converges to 3

2
.

(iii)
∑

arctan(n)

Observe in this case that limn→∞
arctan(n) = π/2, so the

series cannot possibly converge.
(iv)

∑

ln

(

n

2n + 5

)

Observe that

lim
n→∞

ln

(

n

2n + 5

)

= lim
n→∞

ln

(

1

2 + 5/n

)

= ln(
1

2
) 6= 0

so this series cannot possibly converge.
(v)

∑ 2

n2 + 4n + 3

This is also a telescopic series, observe that

∑ 2

n2 + 4n + 3
=

∑ 1

n + 1
−

1

n + 3
.

As with the other example, when the partial sums are calcu-
lated, the result will just be the first two terms of the sequence

1

n + 1
,

so the series converges to

1

2
+

1

3
.

Example 3.2. Suppose that r and a are numbers. The series
∑

arn

is called a geometric series. and determining whether it converges and
when it does, what it converges to, is fairly straight forward.
First suppose that |r| > 1. Then limn→∞

arn 6= 0 so it follows that the
sum

∑

arn
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does not converge. Therefore, the only values of r for which it may
converge are when |r| < 1. Suppose that |r| < 1. Then if SN is the
Nthe partial sum, observe that

(1 − r)SN = (a + ar + . . . arN ) − (ar + ar2 + . . . arN+1) = a − arN+1.

This means that the Nth partial sum can be calculated using the for-
mula

SN =
a(1 − rN)

(1 − r)
.

To find the sum, we need to take

lim
N→∞

SN = lim
N→∞

a(1 − rN)

(1 − r)
=

a

1 − r

since |r| < 1. Thus we get the following result:

Result 3.3. If
∑

arn is a geometric series, it converges if and only if
|r| < 1. If it converges then it converges to

a

1 − r
.

This result makes finding certain sums very easy.

Example 3.4. Does 1 + .4 + .16+ .064 + . . . converge, and if so, what
does it converge to?
This is a geometric series with first term a = 1 and common ratio .4,
so it converges with sum 1/(1 − 0.4) = 1/(0.6).

Geometric series are very useful. They can help transform a decimal
into a fraction.

Example 3.5. Write the decimal 0. ¯728 as a fraction.
We observe that

0. ¯728 =
728

1000
+ 728 ∗

1

(1000)2
+ 728 ∗

1

(1000)3
+ 728

1

(1000)4
+ . . .

This is a geometric series with first term a = 728/1000 and common
ratio 1/1000. Therefore, we can use the geometric sum formula to get

0. ¯728 =
728

1000
+ 728 ∗

1

(1000)2
+ 728 ∗

1

(1000)3
+ 728

1

(1000)4
+ . . .

=
728

1000

1 − 1

1000

=
728

1000

999

1000

=
728

999


