
Section 11.4: The Comparison Tests

1. The Comparison Test

In this section, we shall consider new ways to test for convergence of
series. The first thing we shall consider is comparison of series - if we
know that a particular series converges, then other series which behave
in the same way will also probably converge. Likewise, if a given series
diverges, then series which behave in the same way will also probably
diverge. This suggests the following test.

Result 1.1. (The Comparison Test) Suppose
∑

an and
∑

bn are series
with positive terms.

(i) If
∑

bn is convergent and an 6 bn for all but finitely many
values of n, then

∑

an is convergent.
(ii) If

∑

bn is divergent and an > bn for all but finitely many values
of n, then

∑

an is divergent.

Proof. First observe that if the equalities stated hold for all but finitely
many n, then after some point in the sequence N , the equality must
always hold. Since the convergence or divergence of a series is indepen-
dent of the first few terms, we can ignore these terms and just consider
the series starting from N where the equalities hold. Therefore without
loss of generality, we shall assume that the equalities hold for all values
of n.
If

∑

bn converges, let sn =
∑n

i=1 ai, tn =
∑n

i=1 bi and t =
∑

∞

i=1 bn.
Since both sequences are positive, sn and tn are both increasing, so
both sequences are monotonic. Also, for every value of n, we have
tn > sn. Since tn → ∞ as n → ∞ we must have t > tn for all n, and
therefore sn 6 t for all n. It follows that sn is monotonic and bounded
and so must converge.
If

∑

bn diverges, then the values of tn → ∞ as n → ∞. However,
sn > tn for all n, so we must have sn → ∞.

�

Warning. We must have the terms of the series positive for this test to
be applied. For example, we could take

∑

1/n2 and
∑

(−n). Clearly
−n < 1/n2 for all n, but we cannot conclude that

∑

(−n) converges
because the terms are not positive.

We illustrate the comparison test with a number of examples.

Example 1.2. Which of the following converge/diverge?

(i)
∑ n − 1

n3 + 3
1



2

This series seems to behave like 1/n2, so we guess that it
converges. To check, observe that

1

n2
>

n − 1

n3 + 3

for all n, so the comparison test implies that it converges.
(ii)

∑ 6n2 + 1

2n3
− 1

This series seems to behave like 1/n, so we guess that it
diverges. To check, observe that

1

n
6

6n2 + 1

2n3
− 1

for all n, so the comparison test implies that it diverges.

2. The Limit Comparison Test

Of course, the comparison test is not always helpful. For example, if
we consider the series

∑

1/(n + 1), we would like to compare it to
∑

1/n to conclude that it converges, but 1/n is always greater than
1/(n + 1). However, we know for sure that it converges since it is just
a shift of 1/n. For series like these where the comparison test is not
quite sufficient, we have the following test:

Result 2.1. (Limit Comparison Test) Suppose
∑

an and
∑

bn are
series with positive terms. If limn→∞

an/bn = c where c is a finite
number and c > 0, then either both series converge or both series
diverge.

We illustrate how to use this test with some examples.

Example 2.2. (i)
∑ 1

9n + 6
This series behaves like 1/n, so we apply the limit compar-

ison test. Evaluating, we get

lim
n→∞

1/n

1/(9n + 6)
=

9n + 6

n
= 9 +

6

n
= 9.

Since 1/n diverges, it follows that
∑

1/(9n + 6) diverges too.
(ii)

∑ 1

(8n2
− 3n)1/3

This series seems to behave like 1/n(2/3), so we use the limit
comparison test. Evaluating, we get

lim
n→∞

1/n2/3

1/(8n2
− 3n)1/3

=

(

8n2
− 3n

n2

)1/3

=

(

8 −

3

n

)1/3

→ 2.



3

Since 1/n2/3 diverges, it follows that
∑

1/(8n2
−3n)1/3 diverges

too.
(iii)

∑ n − 1

n4n

This series seems to behave like 1/4n so we shall test with the
limit comparison.

lim
n→∞

1/4n

(n − 1)/(n4n)
=

n4n

4n(n − 1)
=

n

(n − 1)
= 1.

Since 1/4n converges, it follows that
∑

(n − 1)/n4n converges
too.


