
Section 11.6: Absolute Convergence and Ratio Tests

The tests we have so far developed are still not sufficient to determine
convergence of series. This means we need to develop some more tests.
The next two tests are two of the most important because they do not
rely on results regarding other tests (like the comparison tests) and do
not require integration - all they require is skilled algebra.

1. Absolute and Conditional Convergence

Before we develop the tests, we need a couple of definitions.

Definition 1.1. A series
∑

an is called absolutely convergent if the
series of absolute values

∑

|an| converges.

There are many series which converge but do not converge absolutely
like the alternating harmonic series

∑

(−1)n/n (this converges by the
alternating series test). We have a special name for such series.

Definition 1.2. A series
∑

an is called conditionally convergent if the
series converges but it does not converge absolutely.

The following is fairly statement is obvious.

Result 1.3. If a series
∑

an is absolutely convergent, then it is condi-
tionally convergent.

This gives us a new way to approach series which have positive and
negative terms - if we can show that they are absolutely convergent,
then they must be convergent. We illustrate with an example.

Example 1.4. Determine whether the

∑ sin(n) + cos(n)
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converges.
Observe that
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and we know that
∑

1/n2 converges, so it follows that

∑ sin(n) + cos(n)

n2

converges absolutely and hence

∑ sin(n) + cos(n)

n2

must converge.
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2. The Ratio and Root Tests

There are two very important tests for absolute convergence. We shall
state them and then look at their uses. The first test is useful for many
different cases but is particularly useful if there is an n! somewhere in
the expression for an.

Result 2.1. (The ratio test)

(i) If

lim
n→∞
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= L < 1

then the series
∑

an converges.
(ii) If

lim
n→∞
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then the series
∑

an diverges.
(iii) If

lim
n→∞
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∣

∣

∣

= L = 1

then test is inconclusive.

The basic idea behind this is to compare the series
∑

an to a geometric
series - such a series converges if and only if the common ratio is less
than 1. If the common ratios of the an’s is less than 1 for large enough
n, then ultimately it will act like a convergent geometric sequence.
Alternatively, if the common ratios of the an’s is greater than 1 for
large enough n, then ultimately it will act like a divergent geometric
sequence.
The following test is convenient when nth powers occur.

Result 2.2. (The root test)

(i) If

lim
n→∞

(|an|)
1/n = L < 1

then the series
∑

an converges.
(ii) If

lim
n→∞

(|an|)
1/n = L > 1

then the series
∑

an diverges.
(iii) If

lim
n→∞

(|an|)
1/n = L = 1

then test is inconclusive.

We illustrate how to use these tests through a few examples.

Example 2.3. Determine whether the following series converge or di-
verge.
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(i)
∑

n1/n

At first glance, it seems like we should apply the root test,
but this involves a root, so the root test will just make it
more complicated. Observe that in this case, we can apply
L’Hopitals rule to the function f(x) = x1/x because it is of type
∞0. Specifically, we apply L’Hopital to ln(x1/x) = ln(x)/x.
This give, (1/x)/x → 0 as x → ∞, so x1/x → e0 = 1 as
x → ∞. In particular, n1/n → 1 as n → ∞, so the nth term
test shows that this series does not converge.

(ii)
∑ 1

(2n)!

We apply the ratio test:

lim
n→∞

1/((2(n + 1))!)

1/((2n)!)
= lim

n→∞

(2n)!

(2n + 2)!

= lim
n→∞

1

(2n + 2)(2n + 1)
= 0.

This means that the series converges (though to what we do
not know!).

(iii)
∑ (n!)2

(2n)!

We apply the ratio test:

lim
n→∞

((n + 1)!)2/((2(n + 1))!)

(n!)2/((2n)!)
= lim

n→∞

(2n)!((n + 1)!)2

(2n + 2)!(n!)2

= lim
n→∞

(n + 1)2

(2n + 2)(2n + 1)
=

1

4
.

This means that the series converges (though to what we do
not know!).

(iv)
∑ 2n

(n3 + 1)

Since there is a power of n, we try the root test:

lim
n→∞

(

2n

(n3 + 1)

)1/n

= lim
n→∞

2

(n3 + 1)1/n
= 2

(using L’Hopital on the denominator like the first example).
Therefore, the root test implies that this series diverges.
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(v)
∑

(2 − e−n)n

We apply the root test:

lim
n→∞

(

(2 − e−n)n

)1/n

= lim
n→∞

(2 − e−n) = 2

so the root test implies that the series diverges.
(vi)

∑ n!

nn

This problem involves both a factorial and a power, so we shall
try the ratio test:

lim
n→∞

(n + 1)!/(n + 1)n+1

n!/nn
= lim

n→∞

(n + 1)!nn

n!(n + 1)n+1
= lim

n→∞

(n + 1)nn

(n + 1)n(n + 1)

= lim
n→∞

(

1 +
1

n

)n

= e > 1

so the ratio test tells us that this series diverges.


