
Section 11.9: Representations of Functions as Power Series

1. Functions we know

Recall that if x is a number with |x| < 1, then the series
∑

xn

converges. In fact, since this is a geometric series with |x| < 1, we
know that this sums to

1

1 − x
.

This means that provided |x| < 1, the function

f(x) =
1

1 − x

agrees with the power series
∑

xn

(starting from 0). By ”agrees”, we mean for any chosen value of x
which is substituted into the equation, the infinite sum agrees with the
value of the series. This leads to two different questions:

Question 1.1. Can this power series be used to construct other power
series which are also functions?

Question 1.2. What other functions can be realized as power series?

We shall answer the second question mainly in the next section. The
first question we shall answer through a number of examples and by
utilizing tools we have developed in Calculus.

Example 1.3. For the following functions, find a power series repre-
sentation and determine the interval of convergence.

(i)

f(x) =
1

1 + x
We know that

1

1 − x
=

∑

xn

on the interval [−1, 1). Substituting −x into the equation, we
get

1

1 + x
=

∑

(−x)n =
∑

(−1)nxn.

Observe that this converges on the interval (−1, 1).
1
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(ii)

f(x) =
x

9 + x2

We know that
1

1 − x
=

∑

xn

on the interval (−1, 1). Substituting −x2/9 into the equation,
we get

1

1 + x2/9
=

9

9 + x2
=

∑

(

−
x2

9

)n

=
∑

(−1)n

(

x

3

)2n

.

This is not quite the equation we are after, but if we multiply
by x/9, we get

x

9

9

9 + x2
=

x

9 + x2
=

x

9

∑

(−1)n

(

x

3

)2n

=
∑

(−1)n+1

(

x

3

)2n+1

.

Applying the ratio test, we have

lim
n→∞

(

x
3

)2n+1

(

x
3

)2n+3
= lim

n→∞

x2

9
< 1

provided |x| < 3, so it converges on the interval (−3, 3). At
the endpoint x = 3, we have

∑

(−1)n+1

(

3

3

)2n+1

which diverges and at x = −9, we have

∑

(−1)n+1

(

−3

3

)2n+1

which diverges. Hence the interval of convergence is (−3, 3).
(iii)

f(x) =
7x − 1

3x2 + 2x − 1
Using partial fractions, we get

f(x) = 2
1

1 + x
−

1

1 − 3x
.

For the first, we make the substitution −x and for the second,
we make the substitution, 3x, giving

2
1

1 + x
−

1

1 − 3x
=

∑

2(−x)n +
∑

(3x)n =
∑

(2(−1)n + 3n)xn.

The first series converges for x in the interval (−1, 1) and the
second for (−1/3, 1/3), so the sum will converge for x in the
interval (−1/3, 1/3).
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Observe that each of these functions represented as power series were
found using simple composition of functions and other elementary alge-
braic operations. We can ask if there are other elementary operations
which can be performed on power series to obtain new ones and in par-
ticular, obtain new functions represented as power series. The following
answers this question.

Result 1.4. If the power series
∑

cn(x − a)n

has radius of convergence R > 0, then the function defined by

f(x) =
∑

cn(x − a)n

is differentiable and integrable on the interval (a − R, a + R) and

(i)

f ′(x) =
∑

ncn(x − a)n−1 = c1 + 2c2(x − a) + 3c3(x − a)2 + . . .

(ii)
∫

f(x)dx = C+
∑ cn(x − a)n+1

n
= C+c0(x−a)+

c1(x − a)2

2
+

c2(x − a)3

3
+. . .

where C is some constant.

The radii of convergence are the same for both the integral and deriv-
ative, but the behavior at the endpoints may be different.

We illustrate the uses of these operations on power series with some
examples.

Example 1.5. Find power series representations for the following func-
tions and the corresponding radii of convergence.

(i)

ln

(

1 + x

1 − x

)

Observe that

ln

(

1 + x

1 − x

)

= ln (1 + x) − ln (1 − x).

Also,

d

dx
ln (1 + x) =

1

x + 1
=

∑

(−x)n

and
d

dx
ln (1 − x) = −

1

1 − x
= −

∑

xn.

Thus

ln

(

1 + x

1 − x

)

= ln (1 + x) − ln (1 − x) =

∫

∑

(−x)ndx +

∫

∑

xndx
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=

∫

∑

((−1)nxn + xn)dx =

∫

∑

2x2ndx = C +
∑ 2x2n+1

2n + 1
.

Observe that f(0) = 0, so C = 0 giving

ln

(

1 + x

1 − x

)

=
∑ 2x2n+1

2n + 1
.

Since the radii of convergence of both of the original series is
1, it follows that the radius of convergence of this series is 1.

(ii)
1

(1 + x)2

Observe that
d

dx

1

1 + x
=

1

(1 + x)2

and
1

1 + x
=

∑

(−x)n =
∑

(−1)nxn.

Therefore
1

(1 + x)2
=

d

dx

1

1 + x
=

d

dx

∑

(−1)nxn

=
∑ d

dx
(−1)nxn =

∑ (−1)nxn−1

n
.

Since the radius of convergence of the original series is 1, it
follows that the radius of convergence of this series will also
be 1.

Example 1.6. Use power series to approximate the following indefinite
integral:

∫

1/3

0

x2 arctan (2x)dx

First observe that
d

dx
arctan (2x) =

2

1 + (2x)2
=

2

1 + 4x2

= 2
∑

(−4x2)n = 2
∑

(−1)n16nx2n

so

arctan (2x) = 2
∑

(−1)n16n x2n+1

2n + 1
(since when x = 0 we have arctan (2x) = 0). Therefore

∫

1/3

0

x2 arctan (2x)dx =

∫

1/3

0

x2(2
∑

(−1)n16n x2n+1

2n + 1
)dx

=

∫

1/3

0

(2
∑

(−1)n16n x2n+3

2n + 1
)dx =

(

2
∑

(−1)n16n x2n+4

(2n + 1)(2n + 4)

)
∣

∣

∣

∣

1/3

0
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∼= 2

(

(1/3)4

(1)(4)
− 16

(1/3)6

(3)(6)
+ 162

(1/3)8

(5)(8)

)

= 0.005685.


